
CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 1

Recommended Practices
for

Persistent IDs for Design Iteration and Downstream
Exchange

Release 1.6

15 October 2025

CAx-IF
Jochen Boy
PROSTEP AG
jochen.boy@prostep.com

Robert Lipman
NIST
robert.lipman@nist.gov

Technical
Asa Trainer
Consultant
agtrainer@comcast.net

Thomas Thurman
Consultant
thomas.r.thurman@imonmail.com

© CAx Interoperability Forum

https://www.mbx-if.org/home/cax/
mailto:jochen.boy@prostep.com
mailto:robert.lipman@nist.gov
mailto:agtrainer@comcast.net
mailto:thomas.r.thurman@imonmail.com

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 2

Table of Contents
Acknowledgements ... 5

1 Introduction .. 6

1.1 Design Iteration .. 6
1.2 Downstream Exchange... 6
1.3 Maintenance of this Document ... 7

2 Scope .. 7

3 Document Identification .. 7

4 Persistent IDs ... 8

4.1 Permitted and Disallowed Uses of Persistent Identifiers ... 8
4.2 Formulation of Identifiers (UUIDs) .. 8
4.3 IDs in STEP ...10

5 Express Diagrams ... 27

Availability of Implementation Schemas ... 35

A.1 AP 242 Edition 4 ..35
A.2 Complete list of Referenceable Entities by a UUID ..35

List of Figures
Figure 1: EXPRESS Entities for Persistent IDs ... 19
Figure 2a - Preprocessor - Single Cylinder Figure 2b - Postprocessor - Half Cylinders 20
Figure 3a - Preprocessor - Half Cylinders Figure 3b - Postprocessor - Single Cylinder 21
Figure 4: UUID Attribute Specific Schema Elements .. 28
Figure 5: UUID Tree Specific Schema Elements .. 29
Figure 6: Entity Identifier for Product .. 30
Figure 7: Entity Identifiers for PMI .. 31
Figure 8a: Entity Identifier using uuid_set_item for Topology/Geometry 32
Figure 9b: Entity Identifier using uuid_list_item for Topology/Geometry 32
Figure 10: Entity Identifier for Supplemental Geometry... 33
Figure 11: Entity Identifier for UDA ... 34

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 3

Document History
This document is a new CAx-IF Recommended Practice and adds new constructs.

Release Date Change
0.1 2018-09-26 Initial release
0.2 2019-09-05 Rewritten to support either Part 21 Data Section (Attribute) approach

and Part 21 E3 Anchor Section approach
0.3 2019-12-27 Added instance diagrams; limited Anchor Section discussion to refer to

a future edition of the document
0.4 2020-01-14 Editorial revision
0.5 2020-05-28 Updated instantiation diagrams (Figures 2, 4, 5, 6)
0.6 2022-12-29 Updated to include UUID_ATTRIBUTE schema, versioning

requirements, and iterative loading of imported data with UUIDs to
emphasize the design iteration use case rather than the downstream-
use use case;

0.7 2023-01-25 Additional tweaks before pre-release reviews including updated
diagrams (Figures 2 through 7). Draft 0.7 out for review.

0.8 2023-02-01 Updated Mikael’s information; Draft 0.8 out for review
0.9 2023-02-03 Minor changes to clarify use of UUID_attribute subtypes rather than

abstract UUID_attribute supertype; Draft 0.9 out for CAx review
0.91 2023-05-18 Replaced all references to “GUID” with “UUID”. This is based on ad

hoc agreement with DMSC who are replacing “QPID” with “UUID” as
well in QIF v4.0 (confirm this version with Larry or Curtis).
Add highlights to the subtypes in section 4.2.2 to identify those subtypes
that will limit scope and be the focus for this Rec Prac and the R52J and
later Test Cases that reference it.
Allow the publishing of UUIDs in either the Data Section form or the
Anchor Section form. Either form is valid and post-processors should
be able to read either type.

0.92 2023-06-07 Updated schema to push UUID_ATTRIBUTE under the Merkle tree;
see Sections 4.2.2 and 5. Initial instantiation model is very similar to
version 0.9 as the UUID_ATTRIBUTE inherits the ‘uuid’ identifier from
uuid_leaf_node that has no other mandatory attributes.

0.93 2023-06-08 Replaced Figures 2 and 3. Changed P21 snippet in clause 4.2.1 to
Example 1. Corrected record #1 in Example 1. Added notes to
uuid_leaf_node, uuid_root_node, uuid_internal_node.

0.94 2023-06-28 Replaced Figures 2 through 8. Changed p21 snippet in Example 1.
Updated EXPRESS in Clause 4.2.2: uuid_attribute_select,
uuid_relationship_role,uuid_attribute, hash_based_v5_uuid_attribute,
uuid_tree_node, uuid_leaf_node, uuid_internal_node, uuid_root_node,
and uuid_context_role. Removed 4.4.2.1 id_attribute as we are no
longer including id_attribute between uuid_attribute and the target.
Updated Technical Authors info. Updated notes on Figures 4 through
8.Added link to trial schema in Annex A.

0.95 2023-11-20 Replaced Figures 2 and 3. Changed uuid_attribute.identified_item to:
LIST [1:?] OF UNIQUE LIST[1:?] OF UNIQUE uuid_attribute_select.
Note that Figure 2 includes a text note to this effect. Replaced
uuid_leaf_node.data with a reference to uuid_attribute_select. Updated
specification of file identification.

1.0 2023-11-28 All current changes accepted; DRAFT status changed to Released

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 4

Release Date Change
1.1 2024-06-15 Updated as follows –

Section 4.2.2.3 - Deprecate HASH_BASED_V5_UUID_ATTRIBUTE;
replaced with hash_function attribute on uuid_isolated_node and/or
uuid_root_node.
Section 4.2.2.6 - Added examples of UUID_RELATIONSHIP and
UUID_RELATIONSHIP_ROLE including Figures 2a, 2b, 3a, and 3b.
Remaining figures renumbered.
Added Section 4.2.5 - PREPROCESSOR AND POSTPROCESSOR
RECOMMENDATIONS FOR DOWNSTREAM CONSUMPTION to
identify how geometric “features” are to be created and UUIDs assigned
by pre-processors and how post-processors would handle these
geometric features and their identifiers.

1.2 2024-12-10 Updated as follows –
Acknowledgements – updated.
Section 3 – Updated Documentation Identification for Release 1.20.
Section 4.1 – Clarified the formation of UUIDs using the version 5
(Namespace UUID and Namestring-based UUIDs) approach and
revised examples of the same.
Section 4.2.1 – Clarified the requirement for revision/version
information needed for iterative use of model data.
Section 4.2.2 – Added new UUID_SET_ITEM, UUID_LIST_ITEM, and
UUID_SET_ITEM_OR_UUID_LIST_ITEM_SELECT types.
Section 4.2.2.6 – Updated the use of UUID_RELATIONSHIP when
using UUID_SET_ITEM or UUID_LIST_ITEM examples.
Sections 4.2.3 – Updated pre- and post-processor requirements to
include new UUID_SET_ITEM and UUID_LIST_ITEM constructs.
Section 5 – Updated Figure 4 with new UUID_SET_ITEM and
UUID_LIST_ITEM constructs.
Section A.4 – Updated schema name, description, and URL.

1.3 2025-07-07 Updates as follows –
Section 3 – Updated Documentation Identification for Release 1.30.
Section 4.2.2 – vertex_point has been removed as a target for UUID
assignment based on discussion among CAx-IF vendors and
organizers
Section A4 – Revised expected timing of AP242 Edition 4 FDIS to Q3-
Q4 CY 2025

1.4 2025-07-30 Updates as follows –
Section 3 – Updated Documentation Identification for Release 1.40.
Section 4.1 – Footnote added
Section 4.2.3 – Paragraphs added about computing and identifying
UUIDs assigned locally vs. those received as reference from external
sources and also about having mechanisms to display UUID data to
application users or to query UUID data by API-based methods in those
applications.

1.5 2025-09-02 Updated examples in Section 4.2.2.6.2 to correct syntax.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 5

Release Date Change
1.6 2025-10-15 Updated Section 3 to reference the current version of this

Recommended Practice.
Added Section 4.1, Permitted and disallowed uses of PIDs. All
subsequent Subsections of clause 4 become 4.2, 4.2.1, etc. Change
notes below also adjusted to follow the new numbering scheme.
Updated Section 4.3.2 (was 4.2.2) to include footnotes on
shape_aspect to clarify that UUID assignment for datums shall be on
the datum_feature or its subtypes, not on its related datum entity.
Updated Section 4.3.5 (was 4.2.5) and its example to use
uuid_set_item.
Updated Section 5, Figure 8. Split Figure into two separate figures –
Figure 8a using uuid_set_item Figure 8b using uuid_list_item.
Updated Appendix A Schema URLs and added a URL to complete
entity list for UUID referencing.
Ready for Release.

Acknowledgements

The authors also wish to thank Mr. Mikael Hedlind, Sandvik, Sweden, Rosemary Astheimer,
NIST, Jan de Nijs, Lockheed Martin, Larry Maggiano, Mitutoyo America Corporation, and Ed
Paff, ITI, for their input on requirements for data exchange between CAD systems for design
iteration and and/or for their input on requirements for data exchange for downstream use
and/or for development of sample test models for discussion on design iteration exchange and
downstream consumption use cases.
This document is principally prepared by Asa G. Trainer dba Trainer Engineering Associates,
Interoperability Consultants, using funds from PDES, Inc. The statements, findings,
conclusions, and recommendations are those of the author(s) and do not necessarily reflect
the views of PDES, Inc or its member companies.

Portions of this report were prepared by Thomas Thurman dba TRThurman Consuling using
Federal funds under Award No. 70NANB22H217 from the Natonal Institute of Standards and
Technology (NIST), U.S. Department of Commerce. The statements, findings, conclusions,
and recommendations are those of the author(s) and do not necessarily reflect the views of
NIST or the U.S. Department of Commerce.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 6

1 Introduction

Research into mechanisms for maintaining traceability of engineering product data during
exchange has concluded that the introduction and tracking of persistent IDs in that product
data are feasible. Achieving traceability of individual data elements during state changes in
product design and product development process can provide immediate practical benefits for
several use cases. In this Recommended Practices document, we will focus on two such use
cases – Design Iteration and Downstream Exchange. Review and discussion by CAx-IF at the
April 2019 meeting, concluded on limiting the testing scope to Downstream Exchange. Design
Iteration will be covered in a future version. After limited participation for the existing
Downstream-use use case in 2020 and 2021 test rounds, and increasing interest in the Design
Iteration use case, a discussion at the September 2022 CAx-IF meeting concluded that focus
should shift to the latter use case.

1.1 Design Iteration
A significant problem in design in terms of efficiency is the difficulty in referencing shared data
between team members (teaming partners or OEMs and their suppliers) during design
iteration. Once a product model recipient consumes a source model into their CAD system and
references product model entities from that source model in their design, they become locked
into that instance of the external data. When subsequent versions of that source data are
received and consumed again, re-mapping the references by hand, to maintain associativity
between the now updated source data and the existing target design data, is challenging at
best and nearly impossible for any but the most trivial of models.
Over the years, several major CAD vendors as well as at least one independent interoperability
vendor, have implemented the ability to perform this associative mapping and update process
automatically (Reference PTC’s “Associative Topology Bus” (patent), NX’s “Associative
Update”, Dassault Systèmes’ “Topological Naming”, Integration Guard, etc.). These
implementations have been successful, to a greater or lesser extent, using customized direct
translation methods or within the boundaries of the individual vendor’s exchange ecosystem.
Implementation across system boundaries poses challenges including differences between
systems in how and when entities are modified during design changes as well as differences
in how each CAD system identifies model elements and the permanence of the identifiers for
elements during change. For example, some systems may transform a geometric entity
internally while maintaining its identifier while others may simply remove and replace the entity
and update its own internal references on the fly. Another challenge is subtle differences
between mathematical approaches to entity modeling in each CAD system and the impact
those mathematical differences have on how entities are mapped. A well-known example is
the modeling of hole features where some systems model the hole as a single cylindrical
surface and other map the hole as two half cylinders. This example of a one-to-many surface
mapping requires solid bookkeeping of entity identifiers by the receiving system.
In short, the ability to retain associativity between source feature, geometry, topology, and or
attribute data and similar target data that may have dependencies on (references to) those
source elements are key requirement for rapid iteration between product versions, thus
improving design efficiency and reducing product development cost.

1.2 Downstream Exchange
Passing of design data to downstream systems has similar needs to maintain associative
references between, for example, manufacturing tool paths and the model entities they are
derived from, or dimensional tolerances as planned and measured in metrology systems and
those same dimensional tolerances as defined in the original design systems where the models
were created. In addition to the challenges of controlling and managing change in downstream
systems based on model state change in designs, there is a second and perhaps more
burdensome requirement for downstream consumption of model data and that is traceability.
Traceability is necessary from the original system of creation of data through all its uses and

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 7

throughout its lifecycle in order to follow potential faults to their source - either design,
manufacture, material, or process. This traceability is a necessary and required forensic tool
to be used in legal proceedings and technical investigations where complex product or process
failures may have resulted in injury or death. In particular, the manufacturing and metrology
communities have long had procedures in place to tag and maintain identification of products
and their components, constituent entities, and attributes, to maintain this traceability and
ensure their ability to isolate and identify any suspect system characteristics or entities in the
event of failure. The ability to rapidly trace through suspect systems may be critical to quickly
rectifying dangerous problems in product designs or product development processes.

1.3 Maintenance of this Document
This document will be maintained by the CAx-IF and will cover the Part 21 based
implementations of persistent IDs. In the current version, this document focuses on both the
design iteration use case and the metrology use case.

2 Scope

The following are within the scope of this document:
• The generation and use of Universally Unique Identifiers (UUIDs) (see Section 4 below)

for maintaining associativity of entities in iterative design.

• The generation and use of Universally Unique Identifiers (UUIDs) (see Section 4 below)
for maintaining associativity of entities for traceability for downstream uses of the
model.

• The use of Part 21 Data Section or Part 21 Ed 3 Anchor Section for assigning UUIDs
either on initial publication of the STEP document or after the original publishing of the
STEP document should be supported.

3 Document Identification

For validation purposes, STEP processors shall state which Recommended Practice
document and version have been used in the creation of the STEP file. This will not only
indicate what information a consumer can expect to find in the file, but even more important
where to find it in the file.
This shall be done by adding a pre-defined ID string to the description attribute of the
file_description entity in the STEP file header, which is a list of strings. The ID string
consists of four values delimitated by a triple dash (‘---‘). The values are:
Document Type---Document Name---Document Version---Publication Date

The string corresponding to this version of this document is:
CAx-IF Rec.Pracs.---Persistent IDs---1.6---2025-10-15

It will appear in a STEP file as follows:
FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.---Persistent IDs---1.6---2025-
10-15',),'2;1');

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 8

4 Persistent IDs

A mechanism for generating uniformly consistent, cross-application entity IDs is required for
the above processes to work. These IDs need to be unique to prevent clashes between entity
identifiers. In the issue summary for ISO Jira Task BS10303-3834 (formerly Bugzilla #5901)
written by Thomas Thurman (see also BRUTUS #23), the scope of such uniqueness was
suggested as only being required within the context of a specific product. This might be
considered sufficient if only the first use case – design iteration – was required. In the context
of the second use case, however, particularly the metrology use case, persistent (permanent),
universally unique identifiers are necessary and need to be applied to product (as well as
product effectivity, i.e., serialized product artifacts, if they exist), and to individual semantic PMI
entities in the product.

4.1 Permitted and Disallowed Uses of Persistent Identifiers
Persistent Identifiers (UUIDs) are only permitted to be provided for use as external identifiers.
No use of a Persistent Identifier (UUID) for internal file reference is permitted. The use of a
Persistent Identifier (UUID) is not permitted to alter the logical structure of the data set by
establishing intra-data-section cross-references. The current version of this recommended
practice deprecates using id_attribute and aggregate_id_attribute for providing
UUID assignment to data.

4.2 Formulation of Identifiers (UUIDs)
Fortunately, persistent, universally unique identifiers have been in use in the information
technology domain for a long time. Such a ‘universally unique identifier’ (UUID) is a 128-bit
number used to identify information in computer systems, e.g., operating systems, databases,
and communications processes. The term ‘globally unique identifier’ (GUID) is sometimes also
used. UUIDs have been standardized by the Open Software Foundation (OSF) and are
documented as part of ISO/IEC 11578:1996 "Information technology – Open Systems
Interconnection – Remote Procedure Call (RPC)" and more recently in ITU-T Rec. X.667 |
ISO/IEC 9834-8:2005. Most computing platforms provide convenient support for generating
them, and for parsing their textual representation. More detail about UUIDs can be found on
Wikipedia. Within the engineering domain, such UUIDs or GUIDs are already in place and
being used in the Industry Foundation Classes (IFC) format of the Building Information Model
(BIM) and in the Quality Information Framework (QIF) standard for the Metrology domain. A
recent agreement has been reached to standardize the nomenclature to UUID in this STEP
recommended Practice as well as the latest release of DMSC’s QIF v4.0 release.
In the above standard there are 5 possible versions of UUIDs:

• Version 1 UUIDs are generated from a time and a node id (usually the MAC address),

• Version 2 UUIDs are generated from an identifier (usually a group or user id), time, and
a node id,

• Versions 3 and 5 produce deterministic UUIDs generated by hashing a namespace
identifier and name,

• Version 4 UUIDs are generated using a random or pseudo-random number.
Currently, the QIF standard suggests the use of Version 4 UUIDs, i.e., via random number
seed. Several tools are generating UUIDs using this UUID Version. Based on research, there
is some desirability to be able to consistently reproduce a UUID from some namespace and
name data. Versions 3 and 5 allow this but the algorithm of Version 3 has been deprecated in
favor of Version 5. Construction of Namespace UUIDs and Namestring-based UUIDs are
discussed below.

https://www.mbx-if.org/home/cax/
https://www.cax-if.de/secure/caesar/brutus/viewissue.php?raID=23
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
http://www.buildingsmart-tech.org/specifications/ifc-overview
http://www.buildingsmart-tech.org/specifications/ifc-overview
http://qifstandards.org/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 9

A Namespace UUID is the responsibility of the publishing organization and is supplied to the
publishing application for generation of appropriate Namestring-based model UUIDs, as
described later in this section. Though there has been some discussion of registering
namespaces specifically for these engineering information exchange use cases, no definitive
plans have been put in place. Until such time as a registry repository is formed, any
organization that generates Namespace UUIDs for their business processes and applications
must retain their own repository for generated namespace UUIDs.
Namespace UUIDs are always owned by the creating (publishing) application and the defined
Namespace UUID is unique to the application and is static. It should be formed from the
following concatenated STEP data –

• <organization.id>+<application.id>+<domain>
• <application.id> includes the application name and version identification
• <domain> is an identifying marker for the domain of the publishing application (for

example, MBSE / PLM / CAD / CAM / CAI / etc) [use of this domain element is
OPTIONAL]

Namestrings for Namestring-based UUIDs are constructed by the application and must
uniquely identify the data object of interest, for example

• <product.id>+<unique.entity.id or unique.path/entity.index>
• Change in properties of a data object do not change the Namestring
• Change in model version does not change a Namestring

UUIDS for any data object must persist unchanged across applications (domains),
enterprises, and over time.
See examples for each of these below.
A version 5 UUID for Namespace could be constructed, for example, from:

– A pre-defined namespace: uuid.NAMESPACE
• For example: UUID('6ba7b810-9dad-11d1-80b4-00c04fd430c8')

– Namespace String (SHA-1 hash of string) composed of
Organization.id: “my company or division, my organization”
Application.id: “CAD system XYZ, version 2024-01234”
Domain: “Product Quality”

The function uuid.uuid51 with arguments (uuid.NAMESPACE, "my company or division,
my organization CAD system XYZ, version 2024-01234, Product Quality")
renders uuid.NAMESPACE = ‘aa378c77-d030-5f0f-9cce-ddfdb81be968’.

A version 5 UUID for a particular Feature Control Frame in a named model could be
constructed, for example, from:

– A pre-defined namespace: uuid.NAMESPACE
• From above example: UUID(‘aa378c77-d030-5f0f-9cce-ddfdb81be968’)

1 Most operating systems, scripting languages, programming languages, and database applications support UUID
generation. In the example shown, Python’s uuid module generates the type 5 uuid via the function call uuid.uuid5().
Other examples for this purpose include the java.util.UUID class methods, the Linux system util-linux package
function uuidgen, and the Bash script’s uuidgen command. For a detailed survey of UUIDs refer to „Beyond
Randomness: A Detailed Study on UUID Standards, Data Integrity, and Identifier Design Across Storage Systems“,
A. R. Sinha, IJIRCT ISSN 2454-5988, 2023

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 10

– Model Identification String (SHA-1 hash of string) composed of
Product.id: “123456789-1”
Type: “PMI Feature Control Frame”
Persistent ID: “ID 879819”

The function uuid.uuid51 with arguments (uuid.NAMESPACE, "123456789-1, PMI Feature
Control Frame, ID 879819")
renders uuid.Namestring = 8cab1aa3-0080-55a7-8181-6fbf4d831ca7'
 (for part number 123456789-1, entity 879819)
It is important to note that, if all hash string elements are the same, the UUID generator will
generate the same UUID again.
Model Identification String (SHA-1 Hash String) is the responsibility of the owner (creator)
application. The creator application should concatenate string elements including the
following:

• a unique part number,

• a part instance serial number (if it exists),

• an entity type or full path from the product to the individual entity, and

• an internally maintained, unique persistent entity ID.
In the remainder of this recommended practice document, we will refer to the term UUID when
describing these unique identifiers.

4.3 IDs in STEP
There are two valid approaches to storing UUIDs in STEP. The first is via an internal identifier
within the context of the Part 21 data section. This method was originally suggested by data
modelers and may make sense for the original publishers of STEP from the source CAx system
and will be described in Section 4.3.2 below. The second is the storing of such identifiers not
in the data section but rather within the Part 21 Edition 3 Anchor Section. This second method
was once put forward primarily as an alternative method to add identifiers to a STEP file for
newly appended data after its original publication or to allow addition of identifiers to legacy
STEP data. Either of the above methods – Data Section or Anchor Section – are considered
valid for initial publication by the source preprocessor or for appending data after initial
publication.

4.3.1 Product Identification and Model Versioning to Support Iteration
Identification of product is necessary to support and product exchange activity whether for
iteration between design systems or for iteration between design systems and downstream
systems. For identification across systems, a UUID_attribute entity needs to be assigned
to product. The product_definition and product_definition_shape entities are
used for this purpose. An example of the connection between these two entities and a
UUID_attribute entity (Section 4.3.2 below) is given in example 1 below:

Example 1

#1=v5_uuid_attribute ('36 character uuid string',(#3));
/*identified_item is the second attribute in the attribute
list */

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 11

#2=product_definition('','',#5,#4);

#3=product_definition_shape(#2);

#4=product_definition_context(...);

#5=product_definition_formation_with_specified_source('',
'',#6,.NOT_KNOWN.);

#6=product(....);

To support iteration, use cases for either design iteration or iteration with downstream
applications, some mechanism is needed, at the application level, to identify the change of
state of the model from one iteration to the next. This is typically done by checking the model
out of a PLM system, performing some modification on the design model, and checking that
next model iteration back into the PLM system. This requirement also applies between
revisions of the model, i.e., when major changes to the design are published for use within the
extended enterprise. In either case (iteration or revision), a counter is incremented to identify
the change in state of the model. Often this counter information is carried not only within the
PLM system, but also within the model itself. In order to support iterative design and update
during STEP exchanges, this iteration flag, i.e., the revision/version counter, also needs to be
injected into the STEP file when created and also needs to be captured by any consuming
STEP postprocessor. The format of this iteration flag is a string in form of <revision> or
<revision letter>.<version number> or <revision letter>-<version number>, e.g. -, A, B, C, etc,
or -, A.1, A.2, B.1, B.2, etc, or -, A-1, A-2, B-1, B-2, etc. The product_definition and
product_definition_formation entities are used for this purpose. An example of the
connection between these two entities and a UUID_attribute entity (Section 4.3.2 below)
is given in example 2 below:

Example 2

#1=v5_uuid_attribute ('36 character uuid string',(#2));
/*identified_item is the second attribute in the attribute
list */

#2=product_definition('','',#3,#4);

#3=product_definition_formation('A.1','',#5);

#4=product_definition_context(...);

#5=product(....);

An iteration/revision flag must be populated using the default value ‘-‘, if no other
revision/version information is available.

4.3.2 Persistent ID (UUID) Entity Identification
The EXPRESS entities and attributes used to support the requirements of UUID entity
identification and relationships between them are illustrated below (Figure 1, also refer to the
schema diagram in Figure 2). They are included in AP242 Edition 4. In case of any
discrepancies between these test schema entries and the published AP242 Edition 4 should
be brought to the attention of the authors.
NOTE - Because Merkle Tree is still a topic of research, it will be held aside at least until Edition
5 while research on net change exchange continues.
Note that the list of types for id_attribute_select and identification_item given below
is not an exhaustive list, i.e. it does not include all subtypes that may be referenced. Please

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 12

refer to the complete list of all possible subtypes, generated by traversing subtype and select
type structures in AP 242 Edition 4, as referenced in Appendix A.5. Only those shown in
bold in the list below will be used for the purposes of entity identification for persistent ID usage
at this time. An entry in either list below may be a supertype and this implies that any subtypes
of that entity are also available for assignment with a UUID.

TYPE id_attribute_select = SELECT
 (action,
 address,

 application_context,
 ascribable_state_relationship,

 dimensional_size, [dimensional_size_with_path]
 geometric_tolerance,
 group,
 organizational_project,
 product_category,

 property_definition,
 representation, [advanced_brep_shape_representation,
shape_representation,]
 shape_aspect2,
 shape_aspect_relationship, [dimensional_location]
 topological_representation_item); [advanced_face,
closed_shell, open_shell, edge_curve]
END_TYPE;

TYPE identification_item = SELECT
 (
action,
application_context,
characterized_object,
characterized_object_relationship,
context_dependent_shape_representation,
derived_unit,

dimension_related_tolerance_zone_element,
dimensional_characteristic_representation,
dimensional_location,
founded_item,

geometric_tolerance_auxiliary_classification,
geometric_tolerance_relationship,
gps_filter,
gps_filtration_specification,
invisibility,
item_identified_representation_usage,

limits_and_fits,
measure_qualification,
measure_with_unit,
named_unit,

plus_minus_tolerance,

2 For a shape_aspect of subtype datum, its UUID shall be assigned to the datum_feature entity (or one of its
subtypes), not to its related datum entity.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 13

representation_item,
representation_item_relationship,

runout_zone_orientation,
tolerance_value,
tolerance_zone_definition,
tolerance_zone_form,
 action_directive,
 action_directive_relationship,
 action_method,
 action_method_relationship,
 action_property,
 action_property_representation,
 action_relationship,
 address,
 alternate_product_relationship,
 alternative_solution_relationship,
 analysis_assignment,
 analysis_representation_context,
 applied_action_assignment,
 applied_action_method_assignment,
 applied_action_request_assignment,
 applied_approval_assignment,
 applied_certification_assignment,
 applied_classification_assignment_relationship,
 applied_contract_assignment,
 applied_description_text_assignment,
 applied_description_text_assignment_relationship,
 applied_document_reference,
 applied_document_usage_constraint_assignment,
 applied_effectivity_assignment,
 applied_event_occurrence_assignment,
 applied_external_identification_assignment,
 applied_external_identification_assignment_relationship,
 applied_identification_assignment,
 applied_ineffectivity_assignment,
 applied_organization_assignment,
 applied_organizational_project_assignment,
 applied_person_and_organization_assignment,
 applied_security_classification_assignment,
 applied_time_interval_assignment,
 applied_usage_right,
 approval,
 approval_relationship,
 approval_status,
 ascribable_state,
 ascribable_state_relationship,
 assembly_component_usage,
 assembly_component_usage_substitute,
 assignment_object_relationship,
 breakdown_element_realization,
 breakdown_of,
 certification,

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 14

 change_group,
 characterized_class,
 class,
 class_system,
 configuration_effectivity,
 configuration_item,
 configuration_item_relationship,
 contract,
 contract_relationship,
 date_and_time_assignment,
 date_assignment,
 degenerate_pcurve,
 dimensional_size,
 dimensional_size_with_path,
 directed_action_assignment,
 document_file,
 document_relationship,
 document_type,
 draughting_model,
 effectivity,
 effectivity_relationship,
 envelope,
 envelope_relationship,
 evaluated_characteristic,
 event_occurrence,
 event_occurrence_relationship,
 evidence,
 exclusive_product_concept_feature_category,
 executed_action,
 general_property,
 general_property_relationship,
 generic_property_relationship,
 group,
 group_relationship,
 identification_assignment_relationship,
 information_right,
 information_usage_right,
 interface_connection,
 interface_connector_as_planned,
 interface_connector_as_realized,
 interface_connector_definition,
 interface_connector_design,
 interface_connector_occurrence,
 interface_connector_version,
 interface_definition_connection,
 interface_definition_for,
 interface_specification_definition,
 interface_specification_version,
 link_motion_relationship,
 material_designation,
 material_designation_characterization,
 measure_representation_item,
 mechanical_design_geometric_presentation_representation,

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 15

 message_relationship,
 organization,
 organization_relationship,
 organizational_address,
 organizational_project,
 organizational_project_relationship,
 package_product_concept_feature,
 person,
 person_and_organization,
 person_and_organization_address,
 point_on_surface,
 presentation_area,
 process_operation,
 process_plan,

 product,
 product_category,
 product_class,
 product_concept,
 product_concept_context,
 product_concept_feature,
 product_concept_feature_category,
 product_concept_relationship,

 product_definition,
 product_definition_formation,
 product_definition_formation_relationship,
 product_definition_occurrence,
 product_definition_occurrence_reference,
 product_definition_relationship,
 product_definition_usage,
 product_definition_usage_relationship,
 product_group,
 product_group_membership,
 product_group_relationship,
 product_identification,
 product_process_plan,
 product_relationship,
 property_definition,
 property_definition_relationship,
 property_definition_representation,
 representation,
 representation_context,
 representation_relationship,
 requirement_assignment,
 requirement_for_action_resource,
 requirement_source,
 retention,
 rule_set,
 satisfies_requirement,
 security_classification,
 security_classification_level,

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 16

 shape_aspect3,
 shape_aspect_relationship,
 shape_feature_definition,
 shape_feature_definition_relationship,
 shape_representation,
 state_definition_to_state_assignment_relationship,
 state_observed,
 state_observed_assignment,
 state_observed_relationship,
 state_type,
 state_type_assignment,
 state_type_relationship,
 structured_message,
 time_interval,
 time_interval_relationship,
 usage_association,
 validation,
 verification,
 verification_relationship,
 versioned_action_request,
 versioned_action_request_relationship);
END_TYPE;

 TYPE uuid_attribute_select = SELECT
 (id_attribute_select,
 identification_item);
 END_TYPE;

 TYPE uuid = STRING (36) FIXED;
 END_TYPE;

 TYPE uuid_list_item = LIST [1 : ?] OF UNIQUE LIST [1 : ?] OF UNIQUE
uuid_attribute_select;
 END_TYPE;

 TYPE uuid_relationship_role = ENUMERATION OF
 (SUPERSEDES,
 MERGE,
 SPLIT,
 DERIVE_FROM,
 SAME_AS,
 SIMILAR_TO);
 END_TYPE;

 TYPE uuid_set_item = SET [1 : ?] OF uuid_attribute_select;
 END_TYPE;

TYPE uuid_set_or_list_attribute_select = SELECT

3 For a shape_aspect of subtype datum, its UUID shall be assigned to the datum_feature entity (or one of its
subtypes), not to its related datum entity

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 17

 (uuid_list_item,
 uuid_set_item);
END_TYPE;

ENTITY uuid_attribute
 ABSTRACT SUPERTYPE OF(ONEOF(
 v5_uuid_attribute,
 v4_uuid_attribute)
 ANDOR uuid_attribute_with_approximate_geometric_location)
 identifier : uuid;
 identified_item : uuid_set_or_list_attribute_select;
 UNIQUE
 UR1 : identifier;
END_ENTITY;

 ENTITY v5_uuid_attribute
 SUBTYPE OF(uuid_attribute);
 END_ENTITY;

 ENTITY v4_uuid_attribute
 SUBTYPE OF(uuid_attribute);
 END_ENTITY;

 ENTITY hash_based_v5_uuid_attribute
 SUBTYPE OF(v5_uuid_attribute);
 hash_function : STRING;
 WHERE
 WR1 : hash_function <> '';
 END_ENTITY;

 ENTITY uuid_attribute_with_approximate_location
 SUBTYPE OF(uuid_attribute);
 location_representation : shape_representation;
 approximate_location : cartesian_point;
 WHERE
 WR1 : location_representation IN
using_representations(approximate_location);
 END_ENTITY;

*)
 ENTITY uuid_relationship;
 identifier : uuid;
 uuid_1 : uuid;
 uuid_2 : uuid;
 role : uuid_relationship_role;
 tree_root : OPTIONAL uuid_tree_root;
 UNIQUE
 UR1 : identifier;
 WHERE
 WR1 : uuid_1 <> uuid_2;;
 WR2 : uuid_1 <> identifier;;
 WR3 : identifier <> uuid_2;;
 wr4 : NOT ((parent_child) = role) OR EXISTS(tree_root);

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 18

 END_ENTITY;

 ENTITY uuid_provenance;
 identifier : uuid;
 content : LIST [1:?] OF UNIQUE uuid_relationship;
 UNIQUE
 UR1 : identifier;
 END_ENTITY;

 ENTITY uuid_tree_node
 ABSTRACT
 SUPERTYPE OF (ONEOF(uuid_leaf_node, uuid_internal_node));
 identifier : uuid;
 node_2 : OPTIONAL uuid_tree_node;
 node_1 : OPTIONAL uuid_tree_node;
 WHERE
 WR1 : node_1 <> node_2;
 END_ENTITY;

ENTITY uuid_leaf_node
 SUBTYPE OF(uuid_tree_node);
 data : uuid_attribute_select;
 DERIVE
 leaf_operand : STRING (1) FIXED := '0';
 WHERE
 WR1 : NOT (EXISTS (node_1) OR EXISTS(node_2));
 WR2 :
(SIZEOF(USEDIN(SELF,'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.
UUID_TREE_NODE.NODE_1')) = 1) AND
(SIZEOF(USEDIN(SELF,'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.
UUID_TREE_NODE.NODE_2')) = 1); END_ENTITY;

 ENTITY uuid_internal_node
 SUBTYPE OF(uuid_tree_node);
 DERIVE
 internal_operand : STRING (1) FIXED := '1';
 WHERE
 WR1 : EXISTS(node_1) AND EXISTS(node_2);
 WR2 : (SIZEOF(USEDIN(SELF,
'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.UUID_TREE_NODE.NODE_
1'))=1) AND (SIZEOF(USEDIN(SELF,
'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.UUID_TREE_NODE.NODE_
2')) = 1);
 END_ENTITY;

 ENTITY uuid_root_node
 SUBTYPE OF(uuid_internal_node);
 hash_function : STRING;
 DERIVE
 root_operand : STRING := '1';
 WHERE
 WR1 : SIZEOF(USED_IN(UUID_SCHEMA.UUID.TREE_NODE.NODE_1)) = 0;
 WR2 : SIZEOF(USED_IN(UUID_SCHEMA.UUID.TREE_NODE.NODE_2)) = 0;

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 19

 WR3 : EXISTS(SELF\uuid_tree_node.node_1) AND
EXISTS(SELF\uuid_tree_node.node_2);
 END_ENTITY;
(
 ENTITY uuid_context_role;
 identifier : uuid;
 role : STRING; UNIQUE UR1 : identifier;
WHERE
 WR1 : role <> ''; END_ENTITY;

Figure 1: EXPRESS Entities for Persistent IDs

4.3.2.1 UUID_ATTRIBUTE
The uuid_attribute entity is an extension from the id_attribute entity that represents
UUID-specific identifier information. The uuid_attribute is abstract and only subtype of
uuid_attribute must be populated, i.e. v5_uuid_attribute and
v4_uuid_attribute, as appropriate. A uuid_attribute associates a UUID with an
ordered or unordered collection of product data items. Only items specified by
id_attribute_select or those specified by identification_item, shall be specified
by uuid_attribute. In current trials, either the ordered or unordered collection is to be
used, and it may contain one or more items. The ordered collection is specified by
uuid_list_item and the unordered collection by uuid_set_item.

As a follow-on trial (timing to be determined), the merkle tree
(shape_aspect...advanced_face, shape_aspect...geometric_tolerance,
shape_aspect...presentation geometry) will be exchanged.

4.3.2.2 V5_UUID_ATTRIBUTE
The v5_uuid_attribute entity is a SUBTYPE OF uuid_attribute, and inherits the attributes
from that ENTITY. A v5_uuid_attribute is a uuid_attribute that provides a UUID that
conforms to version 5 of the relevant rfc. Version 5 UUIDs are generated based on a known
namespace identifier and a name string that can be relied on between iterations of the product.
The names string nor the namespace are provided. They are left to the implementor to
manage internally (refer to Section 4.2 for details).

4.3.2.3 HASH_BASED_V5_UUID_ATTRIBUTE
The hash_based_v5_uuid_attribute entity may be deprecated in the future. Please
refer to Section 4.3.2.12 .

4.3.2.4 V4_UUID_ATTRIBUTE
The v4_uuid_attribute entity represents UUID identifier information. This entity collects
the value of one of the UUID subtypes and the STEP entity that that UUID is assigned to. A
uuid_attribute associates a UUID with an ordered collection of product data items. A
v4_uuid_attribute is a uuid_attribute that provides a UUID that conforms to version
4 of the relevant rfc. Version 4 UUIDs are generated randomly and cannot be relied on
between iterations of the product.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 20

4.3.2.5 UUID_ATTRIBUTE_WITH_APPROXIMATE_LOCATION
The uuid_attribute_with_approximate_location is a subtype of uuid_attribute
that provides an approximate location in cartesian space of an item or items that has a UUID
assigned.

4.3.2.6 UUID_RELATIONSHIP
The uuid_relationship relates two UUIDs and provides a role for that relationship.

4.3.2.6.1 UUID_RELATIONSHIP_ROLE
The uuid_relationship_role enumerates the permitted roles associated with a
uuid_relationship. The allowed roles are SUPERSEDES, MERGE, SPLIT,
DERIVE_FROM, SAME_AS, and SIMILAR_TO.

4.3.2.6.2 Example Usage of UUID_RELATIONSHIP for two different
UUID_RELATIONSHIP_ROLEs

UUID Treatment for Surface Split

Figure 2a - Preprocessor - Single Cylinder Figure 2b - Postprocessor - Half Cylinders

In Figure 2a and Figure 2b above, the native sending system models a hole feature as a single
cylindrical surface and its STEP preprocessor assigns a UUID (UUID1) to the
advanced_face for that surface on export. The receiving system models hole features as a
pair of cylindrical surfaces and its STEP postprocessor assigns a single UUID (UUID2) to the
set of two advanced_face entities created for the original surface received during import.

To maintain traceability between the original as-exported entity and the as-received entities,
the post-processor must capture the relationship between UUIDs internally. When
reexporting is needed by the receiver, the system will use UUID_RELATIONSHIP as shown
below to preserve that traceability on export.

Preprocessor…
#123 = ADVANCED_FACE(…);

#456 = V5_UUID_ATTRIBUTE(<UUID1>, UUID_SET_ITEM((#123)));

UUID1 UUID3 UUID2

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 21

Postprocessor (when/if reexporting)…
#124 = ADVANCED_FACE(…);

#125 = ADVANCED_FACE(…);

#457 = V5_UUID_ATTRIBUTE(<UUID2>, UUID_SET_ITEM((#124,#125)));

#888 = UUID_RELATIONSHIP(<UUID3>,<UUID1>,<UUID2>, .SPLIT.);

UUID Treatment for Surface Merge

Figure 3a - Preprocessor - Half Cylinders Figure 3b - Postprocessor - Single Cylinder

In Figure 3a and Figure 3b above, the native sending system models a hole feature as a pair
of half cylindrical surfaces and its STEP preprocessor assign a UUID (UUID1) to the list of
advanced_face entities for those surfaces on export. The receiving system models hole
features as a single cylindrical surface and its STEP postprocessor assigns a UUID (UUID2)
to that advanced_face entity during import while including a uuid_relationship that
captures the fact that the new advanced_face (UUID2) is merged from the original
advanced face list (UUID1) [see below].

.
Preprocessor…
#123 = ADVANCED_FACE(…);

#124 = ADVANCED_FACE(…);

#456 = V5_UUID_ATTRIBUTE(<UUID1>, UUID_SET_ITEM((#123,#124)));

Postprocessor (when/if reexporting)…
#125 = ADVANCED_FACE(…);

#458 = V5_UUID_ATTRIBUTE(<UUID2>, UUID_SET_ITEM((#125)));

#888 = UUID_RELATIONSHIP(<UUID3>,<UUID1>,<UUID2>, .MERGE.);

Example 3 – Example of use of UUID_LIST _ITEM to represent an ordered list of entities along
a direction vector from top surface to bottom surface

UUID3
UUID2 UUID1

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 22

Preprocessor…
#123 = ADVANCED_FACE(…); entry surface

#124 = ADVANCED_FACE(…); inclined cyl half

#125 = ADVANCED_FACE(…); second inclined cyl half

#126 = ADVANCED_FACE(…); exit surface

#150 = EDGE_CURVE(…); entry inclined cyl edge half

#151 = EDGE_CURVE(…); entry second inclined cyl edge half

#153 = EDGE_CURVE(…); exit inclined cyl edge half

#154 = EDGE_CURVE(…); exit second inclined cyl edge half

#456 = V5_UUID_ATTRIBUTE(<UUID1>, UUID_LIST_ITEM

 (((#123),(#150,#151),(#124,#125),(#153,#154),(#126))));

Postprocessor (when/if reexporting)…
#123 = ADVANCED_FACE(…); entry surface

#124 = ADVANCED_FACE(…); inclined cyl half

#125 = ADVANCED_FACE(…); second inclined cyl half

#126 = ADVANCED_FACE(…); exit surface

#150 = EDGE_CURVE(…); entry inclined cyl edge half

#151 = EDGE_CURVE(…); entry second inclined cyl edge half

#153 = EDGE_CURVE(…); exit inclined cyl edge half

#154 = EDGE_CURVE(…); exit second inclined cyl edge half

#456 = V5_UUID_ATTRIBUTE(<UUID1>, UUID_LIST_ITEM

 (((#123),(#150,#151),(#124,#125),(#153,#154),(#126))));

4.3.2.7 UUID_PROVENANCE
The uuid_provenance is the specification of a sequence of uuid_relationships that
provides a historical record of those relationships. The sequence is a simple list form.

4.3.2.8 UUID_CONTEXT_ROLE
The uuid_context_role associates a role (non-empty string value) to a UUID.
Preprocessors are recommended to populate this string value as “design_iteration” or
“downstream_manufacturing”, as appropriate.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 23

4.3.2.9 uuid_tree_node
A uuid_tree_node is one of (uuid_leaf_node, uuid_internal_node, uuid_root_node). There are
two optional attributes node_1 and node_2 that specify lower level nodes. A uuid_tree_node
is ABSTRACT and shall not be populated by itself.

4.3.2.10 uuid_leaf_node
A uuid_leaf_node is a subtype of uuid_tree_node that is a leaf node in a tree. A uuid_leaf_node
specifies a uuid_attribute as its data attribute. A uuid_leaf_node shall be referenced by two
uuid_tree_nodes (but not itself or another uuid_leaf_node).

4.3.2.11 uuid_internal_node
A uuid_internal_node is a subtype of uuid_tree_node that is internal to the tree. It may be
referenced by one uuid node (that is not a uuid_leaf_node) and shall reference two lower level
nodes.

Note: For initial trial the merkle tree is out of scope. No tree entities need be populated.

4.3.2.12 uuid_root_node
A uuid_root_node is a subtype of uuid_tree_node that is the root node in a tree. It shall not be
referenced by other nodes and shall reference two lower level nodes. The uuid_root_node
provides the hash function for the tree.

4.3.3 UUID PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS

Preprocessor and Postprocessor Recommendations: All preprocessor and
postprocessor applications should be able to store and retrieve UUIDs and their entity
assignments when needed. Applications shall be able to display to the user, on command, or
via API-based queries for automated consumption/verification, any or all assigned UUIDs and
any or all reference UUIDs and the entities to which they belong, using appropriate filters. The
method of user display – model tree, parameter table, analysis table, or exported file and the
content of the entity information displayed – is left to the vendor to determine.
A postprocessor shall determine whether a received UUID is owned by them or by some other
system or entity by computing a UUID for the entity in question using the method of Section
4.1 above and comparing the as-received UUID to the as-computed UUID. If the UUIDs match,
then the model object is owned by them. If, on the other hand, the UUIDs do not match, then
the model object is owned by an external system or entity and the UUID and the object to
which it refers is a reference UUID and object and the receiving system shall not modify it.
 A preprocessor may also contain data previously imported from an external source and,
therefore, shall not overwrite preexisting UUIDs or the data assigned to those UUIDs when
exporting.

Preprocessor Recommendations: All preprocessors must generate UUIDs for each entity
that they wish to persistently identify.
Each Product entity must have a UUID assigned. Each Semantic PMI entity -- dimensions,
tolerances, datum tags and targets, surface finishes, and model notes -- may have a UUID
assigned. All topological entities such as faces, edges, and vertices as well as supplemental
geometry entities that are used as reference for the above Semantic PMI entities in the pre-
processing system may have UUIDs assigned. In addition, User Defined Attributes (UDAs)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 24

may be assigned to product, geometry, or PMI in support of the metrology use case and these
UDAs may also have UUIDs assigned.
Preprocessors must ensure that all UUIDs assigned to entities from the CAD model as
described above must be maintained and be stable from one iteration of the CAD model to the
next, i.e. an entity will retain the same UUID from model iteration to iteration, from CAD session
to session, or from a session on machine X to a session on a different machine Y as long as
the entity exists in the data. This rule applies at all levels, i.e., to Product and product version
as well as to annotation (PMI) entities, and to associated geometry and topology or
supplemental geometry entities. When new entities are created by the CAD user, new UUIDs
will be assigned to those new entities. When entities are deleted from the model, their UUIDs
must not be reused.
It is recommended that pre-processors, that own the original CAD data, will publish UUIDs as
described in Section 4.1 above as identifiers within the Data Section of the STEP file using the
structures described in Section 4.2.2 above. Though pre-processors may, however, use the
Anchor Section method as an alternate approach, this method is not recommended.
Also, preprocessors shall not populate id_attribute nor aggregate_id_attribute to
assign a UUID to data.

Postprocessor Recommendations: Postprocessors must support the reading of UUIDs
whether those UUIDs are published within the Data Section or within the Anchor Section.
Postprocessors must retain incoming UUIDs for all identified geometry and topological entities,
supplemental geometry entities, PMI entities, UDA entities and product and product version
entities read.
Postprocessors shall ignore id_attribute and aggregate_id_attribute assigning
UUID to data.

Related Entities:
N/A

4.3.4 PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS FOR
DESIGN ITERATION

Preprocessor Recommendations:
All preprocessors must generate UUIDs for each entity that they wish to permanently identify
and must ensure that all UUIDs assigned to entities from the CAD model as described above
must be maintained and be stable from one iteration of the CAD model to the next. (Ref –
Sections 4.2.2 and 4.2.3 above).
All preprocessors must also export product and product version information with
identifying UUIDs as specified Section 4.2.1 above.
Postprocessor Recommendations:
Initial Import -
All postprocessors, upon first import of a STEP model, must retain incoming UUIDs for all
identified STEP entities and map UUIDs assigned to the equivalent internal CAD entities as
imported. How this mapping is handled in each postprocessing application is left to the
individual application to manage but a table of mappings should be retained for later use in
subsequent iteration.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 25

All postprocessors, upon the first import of the STEP model, must retain in the mapping the
version information specified in Section 4.2.1 above as well as the product UUID and STEP
file name information for the model for later use in subsequent iteration.
Subsequent to postprocessing, the imported model can be used for further design including
the addition of new entities (geometry, features, datums, PMI, UDAs, process information, etc)
as long as none of the imported entities that had UUIDs assigned are modified in any
way.
The postprocessing system shall, if new content is added, create and assign UUIDs to new
entities as needed to further facilitate iterative exchange using the method described above
for preprocessors.

Subsequent Import -
Subsequent to the initial import above, a postprocessor will, when loading a new STEP file for
which an existing imported model exists in memory (i.e., that can be identified as having
matching product UUIDs and file name information), replace all existing imported entities with
the newly imported content, but will ensure that any native entities previously added will have
their references preserved (reassigned to the same imported entities). This process will allow
automated update of child references, thus preserving design intent from iteration to iteration.

Related Entities:
N/A

4.3.5 PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS FOR
DOWNSTREAM CONSUMPTION

Systems exchanging data for downstream use need to include mechanisms for collecting
geometric “features” that represent elements of product shape that typically represent
manufacturing and / or inspection operations. These geometric “features” need to be tracked
and therefore require that UUIDs be assigned as appropriate.
For test rounds starting with R54J and beyond and for all PID test cases, preprocessing
systems will create geometric feature groups for a particular class of design features – either
for individual hole features (simple or complex) or for pattern features containing those hole
features.
Note that holes created by extrusion of circular arcs or revolving of 2D profiles are out of scope
for these early tests.
The collection of elements and assignment of UUIDs to those collections are described below.
The intent for the Hole “features” of test case PDC is that all advanced_face entities of hole
features in the native CAD model’s model tree are collected as shown below. The UUID is
assigned via a v5_uuid_attribute which uses uuid_set_item to collect
advanced_face entities for a hole “feature” as shown below.

#4 = ADVANCED_FACE(‘’,(#11),#12,.T.);
#5 = ADVANCED_FACE(‘’,(#13),#14,.T.);
#6 = ADVANCED_FACE(‘’,(#15),#16,.T.);
#7 = ADVANCED_FACE(‘’,(#17),#18,.T.);
#457 = V5_UUID_ATTRIBUTE(<UUIDx>, UUID_SET_ITEM((#4, #5, #6, #7)));

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 26

There may be instances where UUIDs need to be applied to groups of shape_aspects
collected in a composite_shape_aspect (or in one of its subtypes). An example of this
is when a pattern of geometric “hole features” needs to be exchanged (Ref – PMI Rec Prac).
In this case, each geometric “hole feature” in the pattern (each captured in a shape_aspect)
is collected in one of the two subtypes of composite_shape_aspect,
composite_group_shape_aspect or composite_unit_shape_aspect. This is
particularly important when applying properties such as PMI to pattern of shapes. When
using composite_group_shape_aspect, the PMI is applied to each instance of
shape_aspect individually. When using composite_unit_shape_aspect, the PMI is
applied to all instances of the shape_aspect simultaneously. When a UUID on the pattern
is needed, it may be applied to either composite_shape_aspect subtype.

Preprocessor Recommendations:
All preprocessors must generate UUIDs for each entity that they wish to permanently identify
and must ensure that all UUIDs assigned to entities from the CAD model as described above
must be maintained and be stable from one iteration of the CAD model to the next. (Ref –
Sections 4.3.2 and 4.3.3 above).
All preprocessors must also export product and product version information with
identifying UUIDs as specified Section 4.3.1 above.

Postprocessor Recommendations:
All postprocessors, upon first import of a STEP model, must retain incoming UUIDs for all
identified STEP entities and map UUIDs assigned to the equivalent internal CAD entities as
imported. How this mapping is handled in each postprocessing application is left to the
individual application to manage but a table of mappings should be retained for later use either
in subsequent iterations of design or for return of feedback from downstream processes.
All postprocessors, upon the first import of the STEP model, must retain in the mapping the
version information specified in Section 4.3.1 above as well as the product UUID and STEP
file name information for the model for later use in subsequent iteration.
Subsequent to postprocessing, the imported model can be used for iteration or feedback
including the addition of new entities (geometry, features, datums, PMI, UDAs, process
information, etc) as long as none of the imported entities that had UUIDs assigned are
modified in any way.
The postprocessing system shall, if new content is added, create and assign UUIDs to new
entities as needed to further facilitate iterative exchange using the method described above
for preprocessors.

Related Entities:
N/A

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 27

5 Express Diagrams

The EXPRESS entities and attributes used to support the complete requirements of entity
identification for product, PMI, topology/geometry, supplemental geometry, and UDA are
illustrated in the figures on the following pages. Note that all instances of terms in the diagrams
shown in Figures 4 through 8 below having the characters “guid” in them are now replaced
with the characters “uuid”.
Note that Figure 4 is rotated 90° for better readability.

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 28

Figure 4: UUID Attribute Specific Schema Elements

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 29

Figure 5: UUID Tree Specific Schema Elements

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 30

Figure 6: Entity Identifier for Product

(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 31

Figure 7: Entity Identifiers for PMI

(examples) (note – uuid_attribute must be replaced by either v5_uuid_attribute or
v4_uuid_attribute.)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 32

Figure 8a: Entity Identifier using uuid_set_item for Topology/Geometry

 (note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

Figure 9b: Entity Identifier using uuid_list_item for Topology/Geometry

 (note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 33

Figure 10: Entity Identifier for Supplemental Geometry

(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 34

Figure 11: Entity Identifier for UDA

(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

https://www.mbx-if.org/home/cax/

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 1.6, 15 October 2025

© CAx Interoperability Forum www.mbx-if.org/home/cax/ 35

Availability of Implementation Schemas

A.1 AP 242 Edition 4
The capabilities described in this Recommended Practices document require at least AP242
Edition 4 (2025) for implementation.
The longform EXPRESS schema for the fourth Edition of AP242 can be retrieved from:
https://standards.iso.org/iso/ts/10303/-442/ed-7/tech/express/mim_lf.exp

A.2 Complete list of Referenceable Entities by a UUID
The complete list of entities that may be referenced by a UUID in AP 242 Edition 4 can be
retrieved from (CAx-IF member access only):
https://nextcloud.boost-lab.net/nextcloud/index.php/f/179700

https://www.mbx-if.org/home/cax/
https://standards.iso.org/iso/ts/10303/-442/ed-7/tech/express/mim_lf.exp
https://nextcloud.boost-lab.net/nextcloud/index.php/f/179700

	Acknowledgements
	1 Introduction
	1.1 Design Iteration
	1.2 Downstream Exchange
	1.3 Maintenance of this Document

	2 Scope
	3 Document Identification
	4 Persistent IDs
	4.1 Permitted and Disallowed Uses of Persistent Identifiers
	4.2 Formulation of Identifiers (UUIDs)
	4.3 IDs in STEP
	4.3.1 Product Identification and Model Versioning to Support Iteration
	4.3.2 Persistent ID (UUID) Entity Identification
	4.3.2.1 UUID_ATTRIBUTE
	4.3.2.2 V5_UUID_ATTRIBUTE
	4.3.2.3 HASH_BASED_V5_UUID_ATTRIBUTE
	4.3.2.4 V4_UUID_ATTRIBUTE
	4.3.2.5 UUID_ATTRIBUTE_WITH_APPROXIMATE_LOCATION
	4.3.2.6 UUID_RELATIONSHIP
	4.3.2.6.1 UUID_RELATIONSHIP_ROLE
	4.3.2.6.2 Example Usage of UUID_RELATIONSHIP for two different UUID_RELATIONSHIP_ROLEs

	4.3.2.7 UUID_PROVENANCE
	4.3.2.8 UUID_CONTEXT_ROLE
	4.3.2.9 uuid_tree_node
	4.3.2.10 uuid_leaf_node
	4.3.2.11 uuid_internal_node
	4.3.2.12 uuid_root_node

	4.3.3 UUID PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS
	4.3.4 PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS FOR DESIGN ITERATION
	4.3.5 PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS FOR DOWNSTREAM CONSUMPTION

	5 Express Diagrams
	Availability of Implementation Schemas
	A.1 AP 242 Edition 4
	A.2 Complete list of Referenceable Entities by a UUID

