



# Recommended Practices for STEP AP242 Edition 4 Domain Model XML Kinematics

Release 1.3

20 October 2025

#### **Contacts:**

Organizational

Jochen Boy PROSTEP AG

jochen.boy@prostep.com

**Technical** 

Guillaume Hirel T-Systems guillaume.hirel@t-systems.com Alexandre Cros

Dassault Systèmes

alexandre.cros@3ds.com

© CAx Interoperability Forum / JT Implementor Forum





#### **Table of Contents**

| 1 In | oduction                                                    | 7  |
|------|-------------------------------------------------------------|----|
| 1.1  | Document Overview                                           | 7  |
| 1.   |                                                             |    |
| 1.   | 2 Scope                                                     | 7  |
| 1.   | Implementation Changes between AP242 Ed.1 TC and AP242 Ed.2 | 7  |
| 1.   | Implementation Changes between AP242 Ed.2 and AP242 Ed.3    | 8  |
| 1.   | Implementation Changes between AP242 Ed.3 and AP242 Ed.4    | 8  |
| 1.   |                                                             |    |
| 1.   |                                                             |    |
| 1.   | ,                                                           |    |
| 1.   |                                                             |    |
| 1.   | 3                                                           |    |
| 1.2  | Organizational Framework                                    |    |
| 1.:  |                                                             |    |
| 1.:  |                                                             |    |
| 1.3  | Maintenance of this Document                                |    |
| 2 S  | pe                                                          | 15 |
| 3 R  | erence to Recommended Practices                             | 16 |
| 3.1  | Reference to Core Document [242-PAS]                        | 16 |
| 3.2  | Listing of Recommended Practices Version in Exchange Files  | 16 |
| 4 K  | ematic Mechanism                                            | 17 |
| 4.1  | Template "Point(Curve/Surface"                              | 17 |
| 4.2  | Template "KinematicLink"                                    |    |
| 4.3  | KinematicPair                                               | 23 |
| 4.   | Template "LowOrderKinematicPair"                            | 26 |
| 4.   | 2 Template "HighOrderKinematicPair"                         | 35 |
| 4.   | Template "LowOrderKinematicPairWithMotionCoupling"          | 43 |
| 4.   | Template "KinematicPairWithMotionCoupling"                  | 46 |
| 4.4  | Template "Mechanism"                                        | 54 |
| 4.5  | Mechanism Structure                                         | 58 |
| 4.6  | Hierarchy of Mechanisms                                     | 63 |
| 4.7  | Template "Import Mechanism"                                 | 63 |
| 4.8  | Template "Kinematic Dressup"                                | 66 |
| 5 K  | ematic Motion                                               | 72 |
| 5.1  | Template "LinkMotionAlongPath"                              | 72 |
| 5.2  | KinematicPathDefinedByNodes                                 | 76 |
| 5.3  | Template "PointToPointPath"                                 | 77 |
| 5.4  | Simplified Kinematic Positioning Representation             |    |
| 5.5  | Full Kinematic Positioning Representation                   |    |
| 6 K  | ematic Statistics and Validation Properties                 | 84 |
| 6.   | Statistics and Validation Properties for Kinematic Motion   | 84 |
| 6.   |                                                             |    |





| Annex A       | Known Issues                                                                   | 91 |
|---------------|--------------------------------------------------------------------------------|----|
| Annex B       | Reference Documents                                                            | 91 |
| List of Fig   | gures                                                                          |    |
| Figure 1: Ov  | erview of Kinematic Capabilities in AP242 Ed.2                                 | 15 |
| •             | mplate "KinematicLink"                                                         |    |
|               | . mplate "KinematicLinkToOccurrenceAssociation"                                |    |
|               | mplate "LowOrderKinematicPair"                                                 |    |
| Figure 5: Te  | mplate "HighOrderKinematicPair"                                                | 36 |
|               | mplate "LowOrderKinematicPairWithMotionCoupling"                               |    |
| Figure 7: Te  | mplate "KinematicPairWithMotionCoupling"                                       | 47 |
| •             | ample of a three_joint_coupler (3 pairs and 2 actuations) involving 4 Kinemati |    |
| Figure 9: Te  | mplate "Mechanism"                                                             | 54 |
| Figure 10: V  | iolation of rigidity rule within an assembly involved in a KinematicPair       | 58 |
|               | ase #1: rigid groups contain only one part/assembly that is not a direct comp  |    |
|               | ssembly on which the mechanism is defined                                      |    |
| _             | ase #1: use of additional assembly nodes                                       |    |
| •             | ase #2: rigid groups made of more than one part/assembly                       |    |
| _             | ase #2: use of additional assembly nodes                                       |    |
| •             | ase #3: different initial position in BoM and Mechanism Structures             |    |
| •             | emplate "Import Mechanism"                                                     |    |
| •             | emplate "Import Mechanism" Special Case for Local Dressup                      |    |
| •             | emplate "KinematicDressup"                                                     |    |
| "PointTo      | Templates "LinkMotionAlongPath", "KinematicPathDefinedByNodes"<br>pPointPath"  | 73 |
|               | emplate "ProductStructureKinematicPathAssociation"                             |    |
| Figure 21: T  | emplate "ProductStructureLinkMotionAssociation"                                | 81 |
| List of Ta    | able o                                                                         |    |
|               | ance Diagram Notation                                                          | 12 |
|               | nematicLink" Attributes                                                        |    |
|               | nematicLink Attributes                                                         |    |
| _             | nematicPair" Attributes                                                        |    |
|               | tuatedDirection" Attributes                                                    | _  |
|               | wOrderKinematicPair" Attributes                                                |    |
|               | ghOrderKinematicPair" Attributes                                               |    |
|               | wOrderKinematicPairWithMotionCoupling" Attributes                              |    |
|               | nematicPairWithMotionCoupling" Attributes                                      |    |
|               | lechanism" Attributes                                                          |    |
|               | inematicMechanismAssociation" Attributes                                       |    |
|               | inkMotionAlongPath" Attributes                                                 | _  |
|               | IntionModelAssociation" Attributes                                             |    |
| . 4010 10. 10 | , wilder                                                                       |    |





| Table 14: "KinematicPathDefinedByNodes" Attributes              | 76 |
|-----------------------------------------------------------------|----|
| Table 15: "PointToPointPath" Attributes                         | 77 |
| Table 16: "ProductStructureKinematicPathAssociation" Attributes | 80 |
| Table 17: "ProductStructureLinkMotionAssociation" Attributes    | 82 |
| Table 18: "LinkMotionRelationship" Attributes                   | 82 |
| Table 19: "LinkMotionTransformation" Attributes                 | 83 |

### **Document History**

| Revision | Date       | Change                                                                                                   |
|----------|------------|----------------------------------------------------------------------------------------------------------|
| 1.0      | 2021-11-26 | Initial public release                                                                                   |
| 1.1      | 2022-11-18 | Final updates for AP242 Ed.3. Incorporated feedback from CAx-IF / JT-IF testing throughout the document. |
| 1.2      | 2023-12-22 | Updates for extended testing scope, e.g., rack and pinion                                                |
| 1.3      | 2025-08-29 | Updates for AP242 Ed.4                                                                                   |
|          |            |                                                                                                          |

## **Working History**

|          | •          |                                                                                                                                                                                                                                                                                                 |  |
|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Revision | Date       | Change                                                                                                                                                                                                                                                                                          |  |
| 1.0      | 2021-11-26 | Adaptation for AP242 Ed.3 Domain Model                                                                                                                                                                                                                                                          |  |
|          |            | Section 1.1.3: Implementation changes to AP242 Ed.2                                                                                                                                                                                                                                             |  |
|          |            | Section 1.1.4: Impl. changes to AP242 Ed.2 Minor Rev.                                                                                                                                                                                                                                           |  |
|          |            | Throughout: Updated references from AP242 Ed.1 TC BO Model to AP242 Ed.3 Domain Model; Rename 'kinematic joint' with 'kinematic pair' all over the document.                                                                                                                                    |  |
|          |            | Section 1.1.2: URL of Domain Model corrected; remark how to find the Ed. 2 MR Domain Model XSD if not published yet by the ISO Section 4.2: additional comments regarding Jira issue BS10303-6167                                                                                               |  |
|          |            | and regarding the use of AxisPlacement                                                                                                                                                                                                                                                          |  |
|          |            | Sections 4.2, 4.11 and 4.11: remark added, that SpecifiedOccurrences are mostly not supported by the PDM systems => currently out of scope                                                                                                                                                      |  |
|          |            | Section 4.3: New attribute ActuatedPair.Name new and (Minor Revision) mandatory; new recommendation for ActuatedPair                                                                                                                                                                            |  |
|          |            | Section 4.3.1: LowOrderKinematicPair.Lower/UpperLimitActualTranslationX/Y/Z changed from xsd:string to xsd:double; Introduction of homokinetic_pair; Updates in spherical_pair_with_pin; Updates in universal_pair                                                                              |  |
|          |            | Section 4.3.2: HighOrderKinematicPair.CurveOrSurface1/2 changed from ComplexType/group to a simple reference; Clarification of the usage of HighOrderKinematicPair.orientation                                                                                                                  |  |
|          |            | Section 4.3.3: Ditto for LowOrderKinematicPairWithMotionCoupling. Lower/UpperLimitRackDisplacement, .Pitch and .Radius1/2                                                                                                                                                                       |  |
|          |            | PropertyValueAssignment added to Representation and RepresentationItem for the mapping of validation properties. The relevant objects are KinematicLink (0), KinematicPair (section 4.3) Mechanism (section 4.4), LinkMotionAlongPath (section 5) and KinematicPathDefinedByNodes (section 5.2) |  |





|     | 1          | Niger of Control of Co |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            | New section 4.5 (Mechanism Structure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            | Section 5.5: LinkMotionRelationship.related: type changed; LinkMotionRelationShip: attribute RelationType made optional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            | Section 6: updates in the validation properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | Some additional consistency rules added as Preprocessor recommendations in section 4.2, 4.3 and 4.4; recommendation for validation properties with value 0 updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |            | Section 6.1.2.4: number of actuations now computed over the whole mechanism rather than for each KinematicPair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |            | New section 6.1.2.5: number of KinematicPairs for each kind of KinematicPair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |            | Old section 6.1.2.5: Grübler Count / Mobility Formula removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1 | 2022-11-18 | Section 1.1.2: update Ed3 Domain Model URL to official value from the ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            | Section 4.2: cardinality of relationship between KinematicLink and Occurrence: rule exception for Rigid Groups removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            | Section 4.2, 4.5: update of preprocessor recommendations regarding Rigid Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | Section 4.3: typos corrected; new recommendation regarding sharing the same GeometrixCoordinateSpace for the AVP 'notional solids centroid' and the Mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |            | Section 4.4: model splitting limitation removed (outdated); 'identical matrix' restriction removed regarding BaseLink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            | Sections 4.4, 4.6, 4.7: 'fixed part' overworked to BaseLink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |            | Section 4.5: one red OccurrenceRelationship missing in the figure. Re-<br>use AxisPlacement from Mechanism to build the NAOU<br>under the dummy assembly nodes. Further updates in the<br>mapping of rigid group during import/export                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            | Section 6.1.2: introduction added with reference to the mapping of validation properties in [242-PAS] + XML examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            | Section 6.1.2.3: name of validation property changed from 'number of moving parts' to 'number of moving KinematicLinks'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            | Annex A: new issue numbers after switch from PDES Inc. Bugzilla to ISO Jira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |            | KinematicPair.Name added to all the XML examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.2 | 2023-12-22 | Section 4.3: remove rule that imply that lower limit and higher limit always have to be both present, or both empty; Link3/Pair-Frame3 and Link4/PairFrame4 added as issue to Edition 4 due to changes in the definition of rack_and_pinion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |            | Section 4.3.3: update of definition of rack_and_pinion; workaround introduced in order to support CAD systems that map the coupling pairs to low order pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |            | Section 4.4: update in XML example: use of Mechanism.Id (mandatory) rather than Mechanism.Name (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            | Section 4.5: slight updates and additional details for the mapping of complex rigid groups (new classification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | Section 6: typo in 'kinematics validation property' fixed ('s' missing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            | Section 6.1.2.2: add LowOrderKinematicPairWithMotionCoupling to the computation of the validation property 'number of low order kinematic pairs'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |            | Sections 5.2 and □ : update the definition of TStart and TEnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |            | All relevant sections: allow the use of SpecifiedOccurrence (for Mechanism and for Motion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| CISION 1.0, 20 October 2020 |                                                       |                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.3                         | 1.3 2025-10-20 Adaptation for AP242 Ed.4 Domain Model |                                                                                                                                                                                                                                                                                                                |  |
|                             |                                                       | New section 1.1.5: Implementation Changes from Ed.3 to Ed.4                                                                                                                                                                                                                                                    |  |
|                             |                                                       | Sections 4.1 and 4.3.2: EER mechanism of Edition 4 introduced                                                                                                                                                                                                                                                  |  |
|                             |                                                       | Section 4.2: mapping of KinematicLinkToOccurrenceAssociation.Sub-<br>Structure added                                                                                                                                                                                                                           |  |
|                             |                                                       | Section 4.3: added sentence to always keep Link1 and Link2 un-<br>changed along the data exchange; mapping of Actuated-<br>Pair updated to ActuatedDirection                                                                                                                                                   |  |
|                             |                                                       | Sections 4.3 and 5.2: recommendation added (from Edition 4 rule): as subtypes of RepresentationItem, KinematicPair, KinematicPairWithMotionCoupling and KinematicPathDefinedByNodes shall be used directly or indirectly, in at least one Representation.                                                      |  |
|                             |                                                       | Section 4.3.1: mapping of new attributes Lower/UpperLimit-<br>Pitch/Roll/Yaw added to LowOrderKinematicPair                                                                                                                                                                                                    |  |
|                             |                                                       | Sections 4.3.1 and 4.3.4: recommendation added to map universal_pair as two revolute_pairs and composed_homokinetic_pair to four revolute_pair if exchanged from CATIA to NX                                                                                                                                   |  |
|                             |                                                       | Section 4.3.2: updating the figure and the example to comply to Part 15 Ed2 EERs; mapping of new attributes Lower/Upper- LimitLengthOnCurve added to HighOrderKinematicPair, mapping of CurveOrSurface updated to PointOrCurve- OrSurface and Model1/2 removed; comment out Range1/2 in HighOrderKinematicPair |  |
|                             |                                                       | Section 4.3.3: updates after testing of the low order coupling pairs; precisions added in the definition of the Lower/Upper limits                                                                                                                                                                             |  |
|                             |                                                       | New section 4.3.4 (Edition 4 KinematicPairWithMotionCoupling) and deprecate portions of section 4.3.3 LowOrderKinematicPairWithMotionCoupling; fixes in figure and missing table for CouplingTypeEnum                                                                                                          |  |
|                             |                                                       | Section 4.5: larger updates dealing with the mapping of rigid groups; figure and XML example added for KinematicPairWithMotionCoupling                                                                                                                                                                         |  |
|                             |                                                       | New numbering after 4.8 to new chapters 5 and 6                                                                                                                                                                                                                                                                |  |
|                             |                                                       | Section 6: how to check the validation properties (semantic carried over from CAx-IF Rec. Pracs.)                                                                                                                                                                                                              |  |
|                             |                                                       | Section 6: use of NumericalValue replaced by IntegerValue for the validation properties.                                                                                                                                                                                                                       |  |
|                             |                                                       | Section 6: precisions added what to take into account when computing the validation properties                                                                                                                                                                                                                 |  |
|                             |                                                       | Section 6.1.2.2: precicions added which KinematicPairs to count as low order and as high order                                                                                                                                                                                                                 |  |
|                             |                                                       | Section 6.1.26: replace NumericalValue with IntegerValue                                                                                                                                                                                                                                                       |  |
|                             |                                                       | Annex A (List of templates) removed                                                                                                                                                                                                                                                                            |  |
|                             |                                                       | Annex B: four new issues to Ed. 4, from the analysis of all Low/HighOrderKinematicPairs from CATIA/NX                                                                                                                                                                                                          |  |





#### 1 Introduction

#### 1.1 Document Overview

#### 1.1.1 Goal and Objectives

The goal of this document is to describe the recommended structure and attribute population for particular instance models created from the entities and attributes defined by the STEP AP242 "Managed Model-based 3D Engineering" Domain Model and populated according to its XML Schema.

The selected instance models illustrate how to encode kinematic data values that need to be exchanged in support of key industry requirements common across the mechanical design domain. The objectives of the usage guide are to:

- Support the short-term needs of the requirements of the Aerospace & Defense and the Automotive industries in the realm of kinematics.
- Prevent the emergence of "flavors", i.e., diverging/conflicting implementations of the AP242 Domain Model XML for different communities
- Ensure consistency with existing Recommended Practices, in particular the joint PDM-IF / MBx-IF / JT-IF Recommended Practices for AP242 Domain Model XML Product and Assembly Structure.

#### 1.1.2 Scope

This document describes the Recommended Practices for the exchange of Kinematic data with external references to geometry files (regardless of file format). It is based on the fourth edition of STEP AP242, which was published in 2025. It contains the Domain Model (ISO 10303-4442:2025) and the corresponding XML schemas, which can be found at

https://standards.iso.org/iso/ts/10303/-4442/ed-5/tech/xmlschema/domain model/

Therefore, the XML header of AP242 Domain Model XML files which shall comply to AP242 Ed.4 shall look like the following:

```
xmlns:n0="https://standards.iso.org/iso/ts/10303/-4442/ed-5/tech/xml-
schema/domain_model/" xsi:schemaLocation="https://stand-
ards.iso.org/iso/ts/10303/-4442/ed-5/tech/xml-schema/domain_model/
https://standards.iso.org/iso/ts/10303/-4442/ed-5/tech/xml-schema/do-
main model/DomainModel.xsd"
```

**Note:** AP242 Edition 4 (ISO 10303-242) contains **Edition 5** of the Domain Model (ISO 10303-4442), hence it is important the string included "ed-5". Edition 4 of the Domain Model was used in the DIS version of AP242 Ed. 4 and does not support all features described in this document.

AP242 is the first STEP Domain Model that is being implemented. During the development of this document and the related prototyping activities, several issues with the schemas and definitions have been identified. These have been documented in the ISO Jira system as official maintenance issues for AP242 and will dealt with as part of the ISO maintenance procedures. The issues are documented throughout this document and gathered in Annex A for reference.

#### 1.1.3 Implementation Changes between AP242 Ed.1 TC and AP242 Ed.2

For a number of constructs, the implementation changed between the Ed.1 and Ed.2, i.e. ISO 10303-3001 Ed.2 and ISO 10303-4442. These changes became necessary due to deficiencies found in the original definitions of these elements, or to lay the foundation for future extensions of the data model.





The changes include structural changes such as embedding and referencing of XML elements as well as technical changes such as new element types or changed definition of attributes. Except for very few of them, all these changes are upward compatible.

The list below provides an overview for the necessary implementation changes to support AP242 Ed.2 in scope of this document:

- New attribute ActuatedPair.Name new => section 4.3
- LinkMotionRelationship.related: type changed from ExternalGeometricModel to ComposedOrExternalGeometricModelSelect => section 5.5 (this has already been assumed in the Rec. Pracs.)
- LinkMotionDecompositionRelationship removed (not used)
- LinkMotionRelationship: attribute RelationType made optional => section 5.5
- PropertyValueAssignment added to Representation for the mapping of validation properties. The relevant objects are KinematicLink (0), KinematicPair (4.3), Mechanism (section 4.4), LinkMotionAlongPath (section 5) and KinematicPathDefinedByNodes (section 5.2)
- MotionModelAssociation now embedded into AssemblyDefinition (PartView) (section 5.1.4 in [242-PAS])
- HighOrderKinematicPair.CurveOrSurface1/2 changed from ComplexType/group to a simple reference (since the select type ExternalCurveOrSurfaceSelect contains only references) (section 4.3.2)
- LowOrderKinematicPair.Lower/UpperLimitActualTranslationX/Y/Z changed from xsd:string to xsd:double (new mapping of EXPRESS type LengthMeasure) (section 4.3.1)
- Ditto for LowOrderKinematicPairWithMotionCoupling.Lower/UpperLimitRackDisplacement, .Pitch and .Radius1/2 (section 4.3.3)
- Clarification of the usage of HighOrderKinematicPair.orientation => section 4.3.2

#### 1.1.4 Implementation Changes between AP242 Ed.2 and AP242 Ed.3

Attribute ActuatedPair.Name now mandatory → section 4.3

#### 1.1.5 Implementation Changes between AP242 Ed.3 and AP242 Ed.4

- New attribute SubAttribute in KinematicLinkToOccurrenceAssociation → section 4.2
- New object KinematicPairWithMotionCoupling → section 4.3.4. The previous mapping workaround using LowOrderKinematicPairWithMotionCoupling is deprecated
- ActuatedPair replaced by ActuatedDirection → section 4.3 to support multiple actuations on the same pair
- New Attributes Lower/UpperLimitPitch/Roll/Yaw in LowOrderKinematicPair → section 4.3.1
- New attributes Lower/UpperLimitLengthOnCurve in HighOrderKinematicPair → section 4.3.2
- Attributes Model1/2 removed from HighOrderKinematicPair → section 4.3.2
- Attributes CurveOrSurface1/2 renamed to PointOrCurveOrSurface1/2 in HighOrderKinematicPair → section 4.3.2
- ProductStructureKinematicPathAssociation and ProductStructureLinkMotionAssociation added to PropertyValueAssignment → section 6.1.1.4
- PathSegment added to PropertyValueAssignment → section 6.1.1.5





#### 1.1.6 Intended Audience

This document is intended to be an implementation guide for developers of CAD and file translation application systems that support and exchange Kinematic information with other systems and applications, in support of the design engineering and related downstream business processes.

#### 1.1.7 Intended Use

This document is intended to be a manual and companion to the developer of STEP data exchange and translator software used by applications that support kinematic definitions. It provides guidelines for the consistent preprocessor instance model creation and requirement value encoding to enable meaningful information exchange between different systems and applications using the STEP AP242 Domain model, and guidelines for the consistent interpretation by a postprocessor of the STEP AP242 Domain model exchange file.

#### 1.1.8 Document Style

The overall document proceeds in an incremental, step-by-step fashion to describe, and in parallel to illustrate the recommended instantiations of the XML elements in the STEP AP242 Domain model.

The "template" concept is used in this document. Structures and sub-structures are defined in one section; they are then re-used in other sections of the documents. These templates are represented by the blue boxes in the diagrams.

Templates for common core constructs, such as for instance Product, are defined in the Recommended Practices for AP242 Domain Model XML Product and Assembly Structure and re-used here. References to such templates are prefixed with [242-PAS].

The Instance Model diagram figures are presented using a graphical notation intended to illustrate the instance model.

Following each instance diagram, a table lists all the attributes of each displayed entity according to the XML schema specification of ISO 10303-3001. The table includes not only the attributes of the EXPRESS schema of the AP242 Domain Model, but also inverse attributes of all possible relations to the element in question. Attributes that are considered important for the scope of these Recommended Practices are in these tables written in black. Attributes that are written in grey are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.

Below the table, all recommended attributes (written in black) are listed, and recommendations are given for them.

Finally, a STEP AP242 Domain model XML exchange structure example is included. The example exchange file corresponds directly to the instance model diagram and illustrates the very same thing using a different notation, i.e., STEP AP242 Domain model XML syntax versus the graphical instance model notation.

#### 1.1.9 Document Structure

The overall scope of requirements is partitioned into a set of major sections corresponding to the identified units of functionality. Within a major section, there may be sub-sections. These sub-sections further divide the scope into smaller components of coherent functionality (called "feature") that interact with each other to realize the functionality of the entire unit.

There is generally a description of requirements and a corresponding instance diagram associated with each section and sub-section of this document. Each instance diagram is followed by a detailed explanation and specific recommendations for the entities used in the instantiation diagram example. The entity listing and explanation is in turn followed by the corresponding XML exchange structure example.





Within a section, diagrams corresponding to sub-sections incrementally build upon one another to finally achieve a complete instance model example that illustrates the entire scope of the unit of functionality.

#### 1.1.10 Instantiation Diagrams

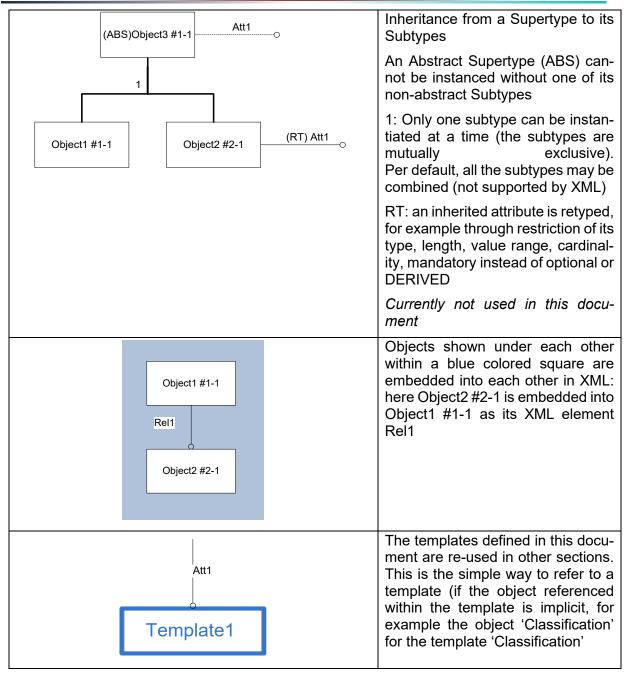
The diagrams are presented using a graphical notation intended to illustrate the instance model.

This notation is not EXPRESS-G and does not illustrate the XML schema; rather it is a graphical illustration of a specific population of a particular instance model of the schema. This notation supports:

- Illustration of entity instances and attribute values (both mapped as XML elements)
- Illustration and identification of referenced entity instances that are either fully illustrated in the current figure, or that refer to another template (if not fully illustrated in the current figure)
- Indication of optional attributes and optional reference entity instances (dashed lines).
- Illustration and identification of groups of functionally related instances (shaded bounding box), showing how XML elements are embedded into each other (the XML elements representing the entity instances placed below are embedded into the XML element representing the entity instance placed above), and
- Identification of specific attribute values (typically string values, may also be enumerated type values or numerical values).

A legend for the diagram notation is shown below:

| Object1 #1-1             | Object (instance of an EXPRESS ENTITY)                                                                 |
|--------------------------|--------------------------------------------------------------------------------------------------------|
|                          | After the #, an instance number is given                                                               |
| Att1                     | Att1: mandatory attribute                                                                              |
| Object1 #1-1 Att2        | Att2: optional attribute                                                                               |
| Object1 #1-1 Att1 S[1:?] | Aggregate type for the definition of the cardinality constraint:                                       |
|                          | B: Bag (non-ordered and my contain duplicates)                                                         |
|                          | S: Set (non-ordered and may not contain duplicates)                                                    |
|                          | L: List (ordered)                                                                                      |
|                          | [x : y]: lower size: upper size                                                                        |
|                          | ?: unconstrained                                                                                       |
|                          | A: Array (indexed)                                                                                     |
|                          | [x : y]: lower index: upper index                                                                      |
| Object1 #1-1 *Att1       | Additional constraint on the object: the attribute(s) depicted with '*' have to contain unique values. |
|                          | 1                                                                                                      |






|                                | Currently not used in this document                                                                                                                                                             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object1 #1-1 (DER)Att1         | Derived Information from another object or attribute                                                                                                                                            |
|                                | Currently not used in this docu-<br>ment                                                                                                                                                        |
| STRING                         | Simple data types                                                                                                                                                                               |
| REAL                           |                                                                                                                                                                                                 |
| POOL FAN                       |                                                                                                                                                                                                 |
| BOOLEAN                        |                                                                                                                                                                                                 |
| Type1                          | User-defined data type                                                                                                                                                                          |
| <u> </u>                       | Currently not used in this docu-<br>ment                                                                                                                                                        |
| EnumType1                      | Enumeration Type                                                                                                                                                                                |
|                                | (consists of a limited list of possible values defined for this type)                                                                                                                           |
| SelectType1                    | Select Type                                                                                                                                                                                     |
| 1                              | (is used if a relationship from an object may apply either to Object1 or Object2)                                                                                                               |
| Object1 #1-1 Object2 #2-1      | For a better readability, the members of a select type are displayed using the inheritance link (see below) and the mutually exclusive constraint. This has the same semantic as a select type. |
|                                | Currently not used in this docu-<br>ment                                                                                                                                                        |
| Object1 #1-1 Rel2 Object2 #2-1 | Attribute as relationship between two Objects (mandatory or optional),                                                                                                                          |
|                                | The circle at the end of the line gives the direction.                                                                                                                                          |
|                                | Rel1: mandatory relationship                                                                                                                                                                    |
|                                | Rel2: optional relationship                                                                                                                                                                     |
| Object1 #1-1 Rel1 Object2 #2-1 | Rel2: inverse attribute (i.e. in the converse direction to Rel1) with cardinality constraint                                                                                                    |
|                                | Currently not used in this docu-<br>ment                                                                                                                                                        |











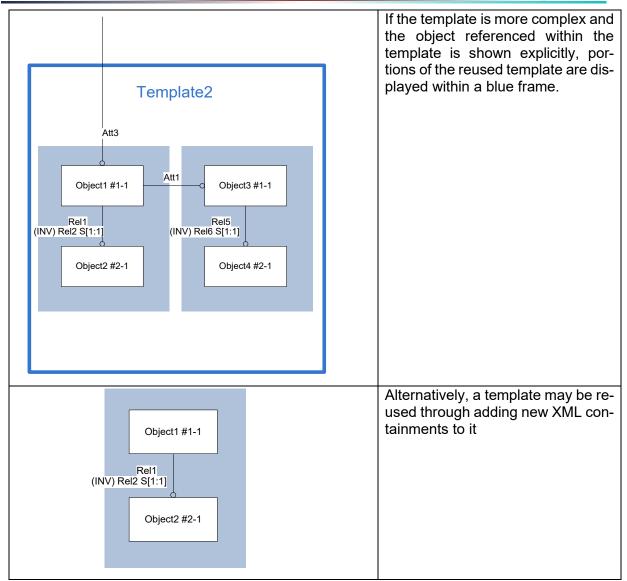



Table 1: Instance Diagram Notation





#### 1.2 Organizational Framework

These Recommended Practices for AP242 Domain Model XML Kinematics are jointly developed and supported by several "communities", specifically the vendor and user communities devoted to the development and implementation of AP242 and its associated Domain Model. This section describes those communities' responsibilities.

#### 1.2.1 Vendor Communities

The **CAx-IF** and the **JT-IF** will be jointly responsible for the overall organization and development of this document. The CAx-IF and JT-IF will:

- Coordinate the creation of the document.
- Verify the approach of the recommended practices in CAx-IF and JT-IF Test Rounds.
- Publish result summaries of testing AP242 Domain Model Kinematics.
- Ensure consistency with existing CAx-IF, JT-IF and PDM-IF recommended practices.

#### 1.2.2 User Communities

**The CAx-IF User Group** is the user community for STEP geometry related topics, currently primarily comprised of Aerospace and Defense members, and supports the development of related use cases, their implementation and support by the standard. It will:

- Support the development of the document.
- Provide subject matter experts.
- Provide A&D requirements and ensure they are fulfilled.
- Ensure consistency with LOTAR standards.

**The JT Workflow Forum (JT-WF)** is the Automotive user community supporting the development of the recommended practices for the ISO JT format. The JT-WF will:

- Support the development of the document.
- Provide subject matter experts.
- Provide Automotive requirements and ensure they are fulfilled.

#### 1.3 Maintenance of this Document

This document describes the recommended practices to implement Kinematic data using the AP242 Domain Model. It is based on the joint PDM-IF / CAx-IF / JT-IF Recommended Practices for AP242 Domain Model XML Product and Assembly Structure. Since Kinematics are an extension to the core scope that is specific to the CAD domain, it is documented in a separate document with references to the core document where needed.

It is the responsibility of the CAx-IF and JT-IF to maintain not only this document, but also to ensure its consistency with the core document.

AFNeT, PDES, Inc., prostep ivip Association and VDA as the hosting organizations of the involved implementor forums will maintain and extend the document as long as it provides utility to the vendor community.





#### 2 Scope

#### The following are within the scope of this document:

- Kinematic Mechanism
- Kinematic Motion

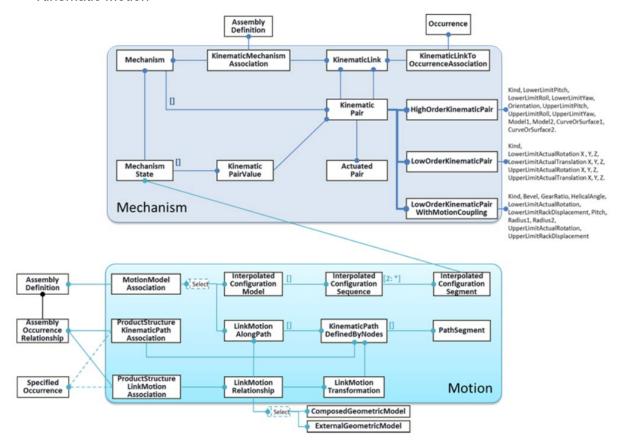



Figure 1: Overview of Kinematic Capabilities in AP242 Ed.2

For more information about the semantics, refer to the STEP Part 105 Application Integrated Resources for Kinematics, which is the basis for this area of the AP242 Domain Model.

## The following are out of scope for this document because they are or will be covered in other documents:

- Basic PDM Capabilities for Product Identification and Assembly Structure [242-PAS]
- Geometric and Assembly Validation Properties [242-PAS]
- External Element References (into Part 21 files or between Domain Model XML files [242-PAS])
- Implementations based on any edition of the AP242 Domain Model (ISO 10303-3001) other than Edition 3 (2022) and 4 (2025).

#### The following are out of scope for this document:

- Hierarchies of Mechanisms (GeometricRepresentationRelationship)
- Flexible Parts within Kinematics
- Use of the kinematic geometrical constraints





#### 3 Reference to Recommended Practices

#### 3.1 Reference to Core Document [242-PAS]

This document is an extension of the joint PDM-IF / MBx-IF / JT-IF Recommended Practices for AP**242** Domain Model **P**roduct and **A**ssembly **S**tructure. Definitions of templates and XML elements contained in the core document are not repeated here.

Where necessary, references to sections of the core document are given in this format:

[242-PAS] 4.6.7

This means a reference to the Recommended Practices for AP242 Domain Model Product and Assembly Structure, section 4.6.7.

This Recommended Practices for AP242 Edition 4 Domain Model XML Kinematics are built on the following version of the core document:

Version 4.0; dated 2025-10-20

This document is publicly available from the MBx-IF and JT-IF web pages.

#### 3.2 Listing of Recommended Practices Version in Exchange Files

For validation purposes, STEP processors shall state which Recommended Practice document and version thereof have been used in the creation of the STEP file. This will not only indicate what information a consumer can expect to find in the file, but even more importantly where to find it in the file.

This shall be done by adding a pre-defined string to the first string element of the Documentation attribute of the Header element in the XML file (for details see section [242-PAS] 4.1.5). The value follows a specific pattern well established in Part 21 files:

Document Type---Document Name---Document Version---Publication Date

The string corresponding to this version of this document is:

<Documentation>CAx-IF Rec.Pracs.---AP242 Domain Model XML
 Kinematics---1.3---2025-10-20/Documentation>

#### General Postprocessor Recommendation:

If a postprocessor encounters attribute values, or object instantiations different from the ones recommended in this version of the document, a warning shall be recorded. In such case, an additional exchange agreement is supposed to be in place among the parties involved in the data exchange.





#### 4 Kinematic Mechanism

The scope of this document is to describe the semantics of kinematic constraints between parts.

To describe the kinematic geometric constraints (without a movie), the following templates are involved:

- Point/Curve/Surface
- KinematicLink
- KinematicPair
- Mechanism
- Import Mechanism
- Kinematic Dressup

#### 4.1 Template "Point(Curve/Surface"

The Point/Curve/Surface template supports the ability to uniquely identify a Point, a Curve or a Surface within a DigitalFile.

## The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

#### Preprocessor Recommendation:

Since the Point/Curve/Surface is referenced into a CAD model, the EER mechanism defined in Edition 4 shall be used. For more details, see [242-PAS] section 9.6.1

The referenced Point(s), Curve(s) and Surface(s) may be defined outside the geometry in a separate geometric file. This geometric file shall have the same GeometricCoordinateSystem as the assembly where the Mechanism is defined.

#### Postprocessor Recommendation:

If the referenced Point/Curve/Surface is not found in the referenced file, or if the referenced file is not found, an error should be returned.

Since in some CAD systems (like CATIA), the assembly model may not contain geometry, the points / curves / surfaces defined in the assembly CAD model have to be mapped as an additional part CAD model. During re-export, this additional part CAD model get mapped as an additional part node attached to the assembly.





#### 4.2 Template "KinematicLink"

A KinematicLink positions a part/assembly within a kinematic mechanism.

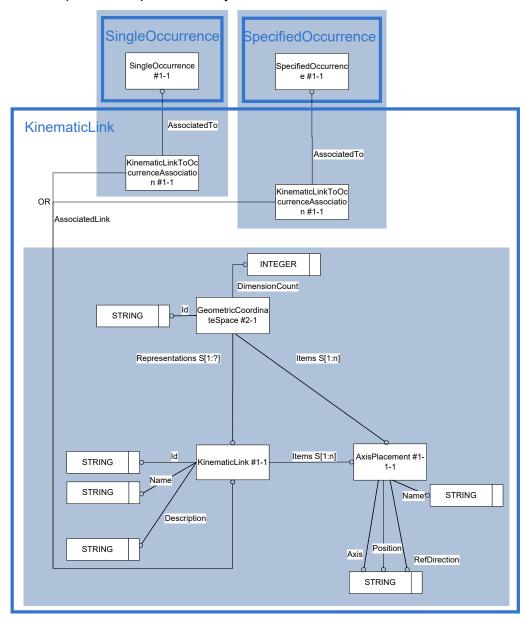



Figure 2: Template "KinematicLink"

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)





```
</Items>
    </Representation>
  <Representations>
  <Items>
    <RepresentationItem uid="kin--0000000004633D60--kpair--kframe--0"</pre>
xsi:type="n0:AxisPlacement">
      <Axis>-1.0000000000,0.0000000000,0.0000000000
      <Position>0.0000000000,-5.000000000,15.0000000000</Position>
      <RefDirection>0.0000000000,-1.0000000000,0.0000000000/RefDirection>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<Part uid="p--00000000129ACFC0">
    <Identifier uid="pid--00000000129ACFC0--id3" id="Gestell" idCon-
textRef="org--0xbc66cf8"/>
  </Id>
  <Versions>
    <PartVersion uid="pv--0000000129ACFC0--id3">
        <PartView xsi:type="n0:AssemblyDefinition" uid="pvv--</pre>
0000000129ACFC0--id3">
          <0ccurrence xsi:type="n0:SingleOccurrence" uid="pi--</pre>
0000000129ACFC0--9">
            <Id id="Gestell"/>
            <KinematicLinkToOccurrenceAssociation uid="kin--0000000004633D60-</pre>
-kpair--klink--0--ltpo" xsi:type="n0:KinematicLinkToOccurrenceAssociation">
              <AssociatedLink uidRef="kin--0000000004633D60--kpair--kframe--</pre>
0"/>
            </KinematicLinkToOccurrenceAssociation>
          </Occurrence>
        </PartView>
      </Views>
    </PartVersion>
  </Versions>
</Part>
```

| Entity KinematicLink attributes | Attribute type                      |
|---------------------------------|-------------------------------------|
| ClassifiedAs                    | OPTIONAL SET[1:?] of Classification |
| ClassifiedAs                    | OPTIONAL SET[1:?] of Classification |
| Description                     | OPTIONAL DescriptorSelect           |
| Id                              | ld                                  |
| Items                           | SET[1:?] of RepresentationItem      |
| Name                            | OPTIONAL DescriptorSelect           |
| RepresentationTypes             | OPTIONAL SET[1:?] of ClassSelect    |
| VersionId                       | OPTIONAL Id                         |





| Entity KinematicLink attributes              | Attribute type                                                    |
|----------------------------------------------|-------------------------------------------------------------------|
| RepresentationRelationship                   | OPTIONAL SET[1:?] of RepresentationRelationship                   |
| ActivityAssignment                           | OPTIONAL SET[1:?] of ActivityAssignment                           |
| ApprovalAssignment                           | OPTIONAL SET[1:?] of ApprovalAssignment                           |
| DateAndPersonAssignment                      | OPTIONAL SET[1:?] of DateAndPersonAssignment                      |
| DatetimeAssignment                           | OPTIONAL SET[1:?] of DateTimeAssignment                           |
| EffectivityAssignment                        | OPTIONAL SET[1:?] of EffectivityAssignment                        |
| EventAssignment                              | OPTIONAL SET[1:?] of EventAssignment                              |
| InformationUsageRightAssignment              | OPTIONAL SET[1:?] of InformationUs-ageRightAssignment             |
| ModelPropertyAssignment                      | OPTIONAL SET[1:?] of ModelPropertyAssignment                      |
| OrganizationOrPersonInOrganizationAssignment | OPTIONAL SET[1:?] of OrganizationOrPersonInOrganizationAssignment |
| PropertyDefinitionAssignment                 | OPTIONAL SET[1:?] of PropertyDefinitionAssignment                 |
| PropertyValueAssignment                      | OPTIONAL SET[1:?] of PropertyValueAssignment                      |
| SecurityClassificationAssignment             | OPTIONAL SET[1:?] of SecurityClassificationAssignment             |
| SuppliedObjectRelationship                   | OPTIONAL SET[1:?] of SuppliedObjectRelation-ship                  |
| TimeIntervalAssignment                       | OPTIONAL SET[1:?] of TimeIntervalAssignment                       |
| OfModel                                      | OPTIONAL ExternalGeometricModel                                   |

Table 2: "KinematicLink" Attributes

#### Attribute recommendations

- **Description**: the reason for the creation of the KinematicLink. The value of this attribute need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **Id**: the identifier or set of identifiers for the KinematicLink. Use "Identifier" template (see [242-PAS]).
- Items: the set of AxisPlacements that can be used to establish a contact frame for KinematicPairs.
- Name: the words or set of words by which the KinematicLink is known. The value of this attribute need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **PropertyValueAssignment**: to assign a PropertyValue to the KinematicLink. Use the "PropertyAssignment" template (see [242-PAS] 6.2).
- Other attributes than these are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.

Remark: the usage of OfModel is not recommended, since it would have to reference the same ExternalGeometricModel as on Occurrence or PartView level (via DefiningGeometry).





#### **Preprocessor Recommendations:**

- Each AxisPlacement referenced by "Items" is the absolute placement of one occurrence
  of the part within the Part where the Mechanism is defined. It is computed (by the sender
  system) out of its relative placement in the static assembly structure.
- A KinematicLink shall be referenced by one and only one Part Occurrence, except in case of a rigid group (made of more than one Part Occurrence, see section 4.5)
- A Part Occurrence shall be referenced (for a given Mechanism) by at most (optional) one KinematicLink (via one instance of KinematicLinkToOccurrenceAssociation embedded into the Occurrence object, see [242-PAS] 7.1).

An issue has been created for this purpose on ISO Jira as TCSC410303-837.

This implies: if an occurrence of a part is involved in many KinematicPairs, (for example the elbow (on the one end) and the shoulder (on the other end) kinematics of the human upper arm), an instance of AxisPlacement shall be created for each of both and all referenced via KinematicLink.Items. In very special cases (for example a clock having 3 KinematicPairs frame/hour hand, frame/minute hand and frame/second hand), the same AxisPlacement may be reused for multiple KinematicPairs (here the AxisPlacement of the clock frame).

- A KinematicLink shall be referenced by at least one KinematikPair
- An AxisPlacement defined within KinematicLink.Items[] shall be referenced by at least one KinematikPair

#### Remarks:

- When the Occurrence is an assembly, the occurrence path from the occurrence of the single part where the AxisPlacement has been computed is currently lost. This would enable to recreate the KinematicLink in the right occurrence of the single part in the target system. Otherwise 'any' part under the moving assembly has to be taken... This is not a critical issue, just enables a better mapping.
   This does not affect the fact that the assembly node is used to define the KinematikLink in the target system, just the place where to store the AxisPlacement (some CAD systems do not support to create AxisPlacements in assembly nodes).

   => this (optional) information shall be mapped to the attribute Substructure' of Kinematical contents.
- As stated in Part 105: "kinematic structures are represented by graphs where the links represent the vertices of the graph, and the joints represent the edges. The rigid objects with kinematic representations are defined kinematically in terms of links and geometrically in terms of their associated shape representation. All coordinate systems related to a kinematic link are founded in the link frame, which is the geometric context of the related link representation. These coordinate systems are called frames in this part of ISO 10303. For the purpose of representing the kinematic aspect of a mechanism, the shape of the link is represented by the relative location and orientation of all its pair frames with respect to its link frame."

This means the original shape element from which the AxisPlacement has been computed is lost

=> in the target system, the AxisPlacement has to be created into the geometric model of the involved part.

This is unproblematic for pure CAx data exchange scenarios, but it may cause trouble for PDM data exchange especially if the target partner shall not edit the geometry but only simulate or work on the kinematics.

cLinkToOccurrenceAssociation.





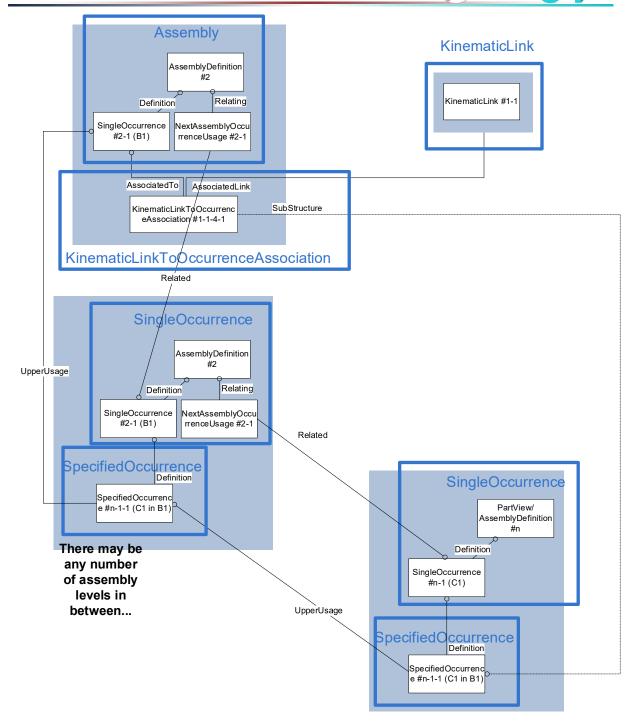



Figure 3: Template "KinematicLinkToOccurrenceAssociation"

| Entity KinematicLinkToOccurrenceAssociation attributes | Attribute type                                     |
|--------------------------------------------------------|----------------------------------------------------|
| AssociatedLink                                         | KinematicLink                                      |
| SubStructure                                           | OPTIONAL SpecifiedOccurrence                       |
| AssociationObjectRelationship                          | OPTIONAL SET[1:?] of AssociationObjectRelationship |

Table 3: "KinematicLinkToOccurrenceAssociation" Attributes





#### Attribute recommendations

- AssociatedLink: the KinematicLink.
- **SubStructure:** the SpecifiedOccurrence of the single part to which the AxisPlacement of the KinematicLink applies. The value of this attribute need not be specified. Use "SpecifiedOcurrence" template (see [242-PAS]).

#### 4.3 KinematicPair

A KinematicPair specifies a motion constraint (within a kinematic mechanism) between two adjacent KinematicLinks coinciding at a joint.

Before describing the different kinds of KinematicPairs, their common supertype and common features are introduced here under:

| Entity KinematicPair attributes | Attribute type                                    |
|---------------------------------|---------------------------------------------------|
| External                        | OPTIONAL ExternalItem                             |
| Name                            | OPTIONAL DescriptorSelect                         |
| Actuation                       | OPTIONAL SET OF ActuatedDirection                 |
| Link1                           | KinematicLink                                     |
| Link2                           | KinematicLink                                     |
| PairFrame1                      | AxisPlacement                                     |
| PairFrame2                      | AxisPlacement                                     |
| ModelPropertyAssignment         | OPTIONAL SET[1:?] of ModelPropertyAssignment      |
| PropertyDefinitionAssignment    | OPTIONAL SET[1:?] of PropertyDefinitionAssignment |
| PropertyValueAssignment         | OPTIONAL SET[1:?] of PropertyValueAssignment      |

Table 4: "KinematicPair" Attributes

#### Attribute recommendations

- Name: the words or set of words by which the KinematicPair is known. Use "Description" template (see [242-PAS] 4.6.7).
- **Actuation**: references an ActuatedDirection for each axis around which or along which an actuation is defined. The value of this attribute need not be specified, especially if many parts are joined together in a chain => the actuation of one pair causes implicitly the movement of the other pairs (which do not need an own actuation).
- Link1: identifies the first KinematicLink.
- Link2: identifies the second KinematicLink.
- **PairFrame1**: identifies the AxisPlacement from the first KinematicLink that coincides at the joint.
- PairFrame2: identifies the AxisPlacement from the second KinematicLink that coincides at the joint.
- **PropertyValueAssignment**: to assign a PropertyValue to the KinematicPair. Use the "PropertyAssignment" template (see [242-PAS] 6.2).
- Other attributes than these are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.





#### Preprocessor Recommendation:

- Name shall be always set, since a kinematic pair has always a name in the CAD system and this name is relevant for communication between partners.
- The name of the KinematicPair shall be unique within all KinematicPairs of a Mechanism.
- Link1 and Link2 shall not reference the same instance of KinematicLink.
- Usually, an instance of KinematicPair shall be referenced by one and only one Mechanism. In special cases (where multiple Mechanisms are defined on the same product structure (for example several local Mechanisms and an overall Mechanism), the same KinematicPair may be referenced by several Mechanisms.
- The unordered combination of Link1 and Link2 (even of Link2 and Link1) shall be unique over all instances of KinematicPair
- The choice of having Link1 or Link2 for the one or the other part is significant if:
  - o an Actuation
  - Lower/UpperLimits (if the lower and upper limits have a different absolute value)

#### are defined.

In such a case:

- Actuations and Limits always apply to the movement of Link2 relatively to Link1.
- only Link1 may be the BaseLink of the Mechanism (see section 4.4). Without Actuation and Limits, a joint may be defined in both ways invariantly, but the mapping of Link1 and Link2 shall be kept unchanged along the data exchange."
- PairFrame1 shall reference one of the AxisPlacements defined in KinematicLink for Link1
- PairFrame2 shall reference one of the AxisPlacements defined in KinematicLink for Link2
- IP1: As a subtype of RepresentationItem, KinematicPair shall be used directly or indirectly, in at least one KinematicLink.

An ActuatedDirection is the indication, along/around which axis the initial movement of Link2 relatively to Link1 shall occur.

| Entity ActuatedDirection attributes | Attribute type                          |
|-------------------------------------|-----------------------------------------|
| ActuationAlongOrAroundAxis          | OPTIONAL ActuationAroundOrAlongAxisEnum |
| Direction                           | OPTIONAL ActuatedDirectionEnum          |
| Name                                | DescriptorSelect                        |

Table 5: "ActuatedDirection" Attributes

#### Attribute recommendations

- Depending on the kind of kinematic pair (see below), one or many of the following attributes may be specified:
  - ActuationAlongOrAroundAxis: indicates that axis that the actuation is around or along. The value of this attribute need not be specified in case of a HighOrderKinematicPair actuated along a curve.

The following values shall be used:





| Enumeration value | Explanation                                       |
|-------------------|---------------------------------------------------|
| Rx                | Indicates that the actuation is around the x-axis |
| Ry                | Indicates that the actuation is around the y-axis |
| Rz                | Indicates that the actuation is around the z-axis |
| Тх                | Indicates that the actuation is along the x-axis  |
| Ту                | Indicates that the actuation is along the y-axis  |
| Tz                | Indicates that the actuation is along the z-axis  |

o **Direction:** specified the direction of the actuation. The value of this attribute need not be specified (the default value is 'bidirectional').

The following values shall be used:

| Enumeration value | Explanation                                                |
|-------------------|------------------------------------------------------------|
| bidirectional     | the actuation is in both directions, positive and negative |
| positive_only     | the actuation is in positive direction only                |
| negative_only     | the actuation is in negative direction only                |
| not_actuated      | the translation or rotation axis is not actuated           |

Name: the words or set of words by which the Actuation is known. Use "Description" template (see [242-PAS] 4.6.7). This is the name of the command (in CATIA) resp. called driver (in NX).

#### Remarks:

- Even if both a rotational actuation and a translational actuation may be given (for example for a cylindrical\_pair), most CAD systems can only actuate one of both at a time => the other actuation attributes shall be unset.
- Depending on the legacy CAD system, not all kinds of actuation are supported. For example, CATIA only supports 'bidirectional' (default) and the AxisPlacements are calculated in such a way, that only Rz and Tz are needed.
- The name of the ActuatedDirection shall be unique within all KinematicPairs of a Mechanism.

In the following sections, the subtypes of KinematicPair are described.

According to Part 105: low order pairs can be represented as sliding high order pairs. If a pair can be represented as a low order pair, it should be so represented and not as a high order pair.





#### 4.3.1 Template "LowOrderKinematicPair"

For a LowOrderKinematicLink, the motion is constrained by simple translation or rotational parameters.

#### **Preprocessor Recommendations:**

 The use of LowOrderKinematicLink shall be done whenever possible, rather than the other subtypes of KinematicPair (used only for the more complex cases).

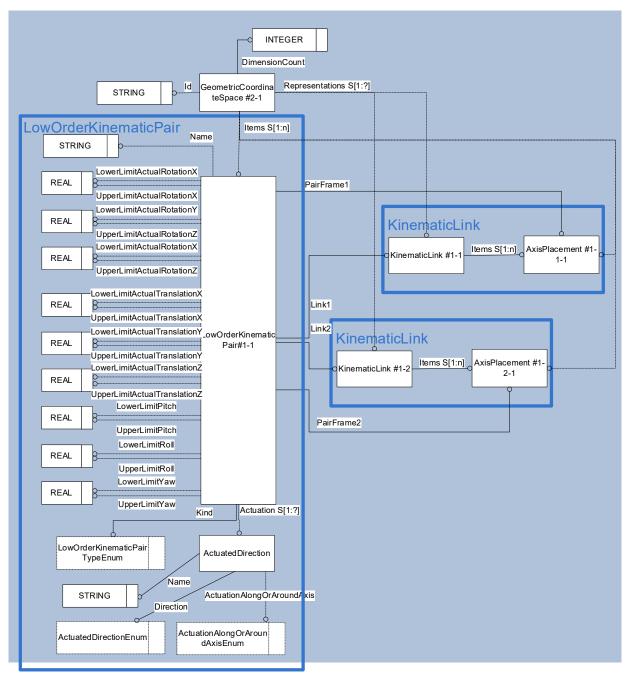



Figure 4: Template "LowOrderKinematicPair"





## The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="n0:Mechanism" uid="kin--000000005F89EE0--m">
      <Ttems>
        <RepresentationItem uidRef="kin--0000000004634660--kpair"/>
</Items>
    </Representation>
  <Representations>
  <Ttems>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
0000000004634660--kpair">
            <CharacterString>Plunger-Disc-Spring</CharacterString>
      </Name>
      <Actuation>
            <actuatedDirection uid="act--kin--000000004634660--kpair">
                 <ActuationAlongOrAroundAxis>Tz</ActuationAlongOrAroundAxis>
                 <Direction>bidirectional
                       <CharacterString>command #1</CharacterString>
                  </Name>
            </ActuatedDirection>
      </Actuation>
      <Link1 uidRef="kin--0000000004634660--kpair--klink--1"/>
      <Link2 uidRef="kin--0000000004634660--kpair--klink--2"/>
      <PairFrame1 uidRef="kin--0000000004634660--kpair--kframe--0"/>
      <PairFrame2 uidRef="kin--0000000004634660--kpair--kframe--1"/>
      <Kind>prismatic pair</Kind>
      <LowerLimitActualTranslationZ>-100.000000000</LowerLimitActualTransla-
tionZ>
      <UpperLimitActualTranslationZ>100.000000000/UpperLimitActualTransla-
tionZ>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
```

| Entity LowOrderKinematicPair attributes | Attribute type                               |
|-----------------------------------------|----------------------------------------------|
| External                                | OPTIONAL ExternalItem                        |
| Name                                    | OPTIONAL DescriptorSelect                    |
| Actuation                               | OPTIONAL SET[1:?] of ActuatedDirection       |
| Link1                                   | KinematicLink                                |
| Link2                                   | KinematicLink                                |
| PairFrame1                              | AxisPlacement                                |
| PairFrame2                              | AxisPlacement                                |
| PropertyValueAssignment                 | OPTIONAL SET[1:?] of PropertyValueAssignment |





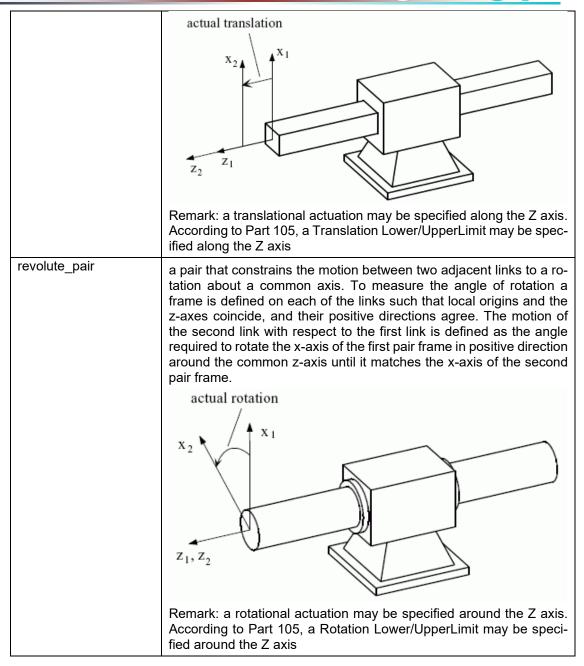
| Entity LowOrderKinematicPair attributes | Attribute type                |
|-----------------------------------------|-------------------------------|
| Kind                                    | LowOrderKinematicPairTypeEnum |
| LowerLimitActualRotationX               | OPTIONAL REAL                 |
| LowerLimitActualRotationY               | OPTIONAL REAL                 |
| LowerLimitActualRotationZ               | OPTIONAL REAL                 |
| LowerLimitActualTranslationX            | OPTIONAL REAL                 |
| LowerLimitActualTranslationY            | OPTIONAL REAL                 |
| LowerLimitActualTranslationZ            | OPTIONAL REAL                 |
| LowerLimitPitch                         | OPTIONAL REAL                 |
| LowerLimitRoll                          | OPTIONAL REAL                 |
| LowerLimitYaw                           | OPTIONAL REAL                 |
| UpperLimitActualRotationX               | OPTIONAL REAL                 |
| UpperLimitActualRotationY               | OPTIONAL REAL                 |
| UpperLimitActualRotationZ               | OPTIONAL REAL                 |
| UpperLimitActualTranslationX            | OPTIONAL REAL                 |
| UpperLimitActualTranslationY            | OPTIONAL REAL                 |
| UpperLimitActualTranslationZ            | OPTIONAL REAL                 |
| UpperLimitPitch                         | OPTIONAL REAL                 |
| UpperLimitRoll                          | OPTIONAL REAL                 |
| UpperLimitYaw                           | OPTIONAL REAL                 |

Table 6: "LowOrderKinematicPair" Attributes

#### Attribute recommendations

• **Kind**: the kind of pair. Where applicable, the following values shall be used:

| Enumeration value | Explanation                                                                                                                                                                                                                                                     |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cylindrical_pair  | a pair that constrains the motion between two adjacent links t translation along a common axis and a rotation about it.                                                                                                                                         |  |
|                   | actual translation rotation $x_2$                                                                                                                                                                                                                               |  |
|                   | Remark: both a rotational and a translational actuation may be specified. According to Part 105, the z-axes shall coincide, and the positive directions shall agree; both Rotation and Translation Lower/UpperLimits may be specified (around/along the Z axis) |  |

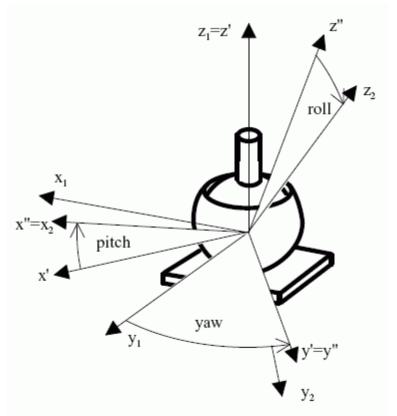





| fully_constrained_pair  ('fixed' in NX, 'rigid' in CATIA) | a pair that prevents any relative motion between two adjacent links. The two pair frames are always forced to coincide.  Remark: no actuation is allowed. According to Part 105, no Lower/UpperLimit is allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| planar_pair                                               | a pair that constrains the motion between two adjacent links to translations along the x-axis and y-axis and a rotation about the z-axis. To measure the translations and the angle of rotation, a frame is defined on each of the links such that the x-, y-, and z-axes coincide, and the positive directions agree. The translations in x- and y-directions are defined as the displacements required to translate the origin of the first pair frame in positive direction of the x- and y-axes until it coincides with the origin of the second pair frame. The angle of rotation is defined as the angle required to rotate the x-axis of the first pair frame in positive direction around the common z-axis until its direction coincides with the direction of the x-axis of the second pair frame. |  |
|                                                           | actual translation y actual translation x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                           | Remark: no actuation is allowed. According to Part 105, both rotation and Translation Lower/UpperLimits may be specified: around the Z axis (Rotation) and along the X and Y axis (Translation) (not supported by NX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| prismatic_pair ('slider' in NX)                           | a pair that constrains the motion between two adjacent links to a translation along a common axis. To measure the distance of translation a frame is defined on each of the links such that their corresponding coordinate axes coincide and their positive directions agree. The motion of the second link with respect to the first link is defined as the distance required to translate the xy-plane of the first pair frame in positive direction of the common z-axis until it coincides with the xy-plane of the second pair frame.                                                                                                                                                                                                                                                                   |  |












#### spherical\_pair

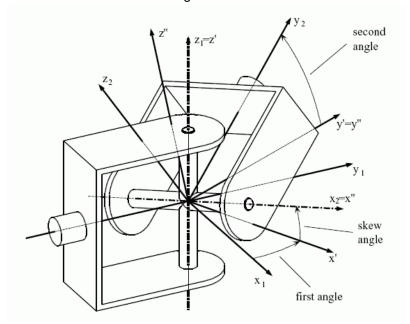
a pair that constrains the motion between two adjacent links to the rotation about three independent axes that intersect in a common point. To measure the three angles of rotation, a frame system is defined on each of the links such that the origins of the frames coincide. The three angles of rotation are defined as the yaw, pitch, and roll angles. They are required to rotate the x-, y-, and z-axes of the first pair frame until the axis directions of this frame coincide with the axis directions of the second pair frame.



Remark: no actuation is allowed. According to Part 105, Rotation Lower/UpperLimits may be specified around all 3 axis (not supported by NX)






spherical\_pair\_with\_pin supported by CATIA nor NX) pitch YOW a pair that constrains the motion between two adjacent links to the rotation about two independent axes that intersect in a common point. It can be compared to the human elbows: the joint between upper arm and forearm. The forearm can rotate around the direction of the forearm and it can also rotate towards the upper arm. To measure the two angles of rotation, a frame system is defined on each of the links such that the origins of the frames coincide. The two angles of rotation are defined as the yaw and pitch angles. They are required to rotate the y-, and z-axes of the first pair frame until the axis directions of this frame coincide with the axis directions of the second pair frame. Remark: actuation may be specified in rotation around Y- and Z-axis. According to Part 105, Rotation Lower/UpperLimits may be specified around the Y and Z axis Unconstrained pair a pair that does not constrain the relative motion between two adjacent links. The unconstrained\_pair may be helpful in early design (not supported by NX stages or for kinematic analysis systems, because it allows to elimiand CATIA) nate the constraints between two links without changing the topological structure. Remark: no actuation is allowed. According to Part 105, Lower/UpperLimit may be specified around/along all axes

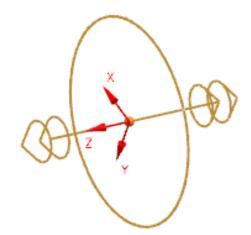




# universal\_pair (not supported by NX)

a pair that constrains the motion between two adjacent links to two rotations about two intersecting axes.




Remark: actuation may be specified in rotation around X- and Z-axis. According to Part 105, a Rotation Lower/UpperLimit may be specified around the X and Z axis (not supported by CATIA)

#### homokinetic\_pair

('constant velocity' in NX, but **not** 'CV joint' in

CATIA ( is defined as 2 universal pairs having parallel ends)) => see composed\_homokinetic\_pair

A homokinetic\_pair is a type of universal\_pair, where the rotation of input axis and output axis are uniform.



Remark: actuation may be specified in rotation around X- and Z-axis. According to Part 105, a Rotation Lower/UpperLimit may be specified around the X and Z axis





- Depending on the Kind of kinematic pair, one or many of the following attributes pairs (lower/upper for X, Y or Z) can be set at a time (Lower or Upper have both to be set).
  - LowerLimitActualRotationX: the minimum value of rotation around the x-axis.
     The value of this attribute need not be specified.
  - UpperLimitActualRotationX: the maximum value of rotation around the x-axis.
     The value of this attribute need not be specified.
  - LowerLimitActualRotationY: the minimum value of rotation around the y-axis.
     The value of this attribute need not be specified.
  - UpperLimitActualRotationY: the maximum value of rotation around the y-axis.
     The value of this attribute need not be specified.
  - LowerLimitActualRotationZ: the minimum value of rotation around the z-axis.
     The value of this attribute need not be specified.
  - UpperLimitActualRotationZ: the maximum value of rotation around the z-axis.
     The value of this attribute need not be specified.
  - LowerLimitActualTranslationX: the minimum value of translation along the xaxis. The value of this attribute need not be specified.
  - UpperLimitActualTranslationX: the maximum value of translation along the xaxis. The value of this attribute need not be specified.
  - LowerLimitActualTranslationY: the minimum value of translation along the yaxis. The value of this attribute need not be specified.
  - UpperLimitActualTranslationY: the maximum value of translation along the yaxis. The value of this attribute need not be specified.
  - LowerLimitActualTranslationZ: the minimum value of translation along the zaxis. The value of this attribute need not be specified.
  - UpperLimitActualTranslationZ: the maximum value of translation along the zaxis. The value of this attribute need not be specified.
  - LowerLimitPitch: the minimum value of the (Y) pitch angle. The value of this attribute need not be specified.
  - o **UpperLimitPitch**: the maximum value of the (Y) pitch angle. The value of this attribute need not be specified.
  - LowerLimitRoll: the minimum value of the (Z) roll angle. The value of this attribute need not be specified.
  - UpperLimitRoll: the maximum value of the (Z) roll angle. The value of this attribute need not be specified.
  - o **LowerLimitYaw**: the minimum value of the (X) yaw angle. The value of this attribute need not be specified.
  - UpperLimitYaw: the maximum value of the (X) yaw angle. The value of this attribute need not be specified.

#### **Preprocessor Recommendations:**

- The value in Lower... shall be smaller than the value in Upper....
- Both KinematicLinks of a LowOrderKinematicPair have to be defined within the same GeometricCoordinateSpace than the Mechanism itself.





- The same GeometricCoordinateSpace shall be used for the Mechanism and the "notional solids centroid" assembly validation property defined in [242-PAS] 13.1.2 of the assembly node on which the mechanism is defined.
- The values 0 for rotation and 0 for translation means that the axis placement of the kinematic links are the same.
- Multiple 360° are possible, negative values also => for example [-360, 1080]
- Since not supported by NX, it is recommended to map universal\_pair as two revolute\_pairs (around both axis of the cross).

#### Postprocessor Recommendations:

Remark: depending on the legacy CAD system, not all Kinds are supported, and not all Limits are supported. For example, from CATIA, the AxisPlacements are calculated in such a way, that only Lower/UpperLimitActualRotationZ and Lower/UpperLimitActualTranslationZ are needed.

#### 4.3.2 Template "HighOrderKinematicPair"

For a HighOrderKinematicLink, the motion constraint requires references to one or more surfaces or curves in order to be defined cinematically.

For the external references to the Point/Curve/Surface within the part geometry files, the use of Part 15 Edition 2 enables a generic External Element Reference (EER) on any object of the DomainModel (not only those having an Attribute 'External'). For more details, refer to [242-PAS] 9.6, example '#1: no containment'.

For more details about yaw, pitch and roll, refer to ISO 8855:1991.





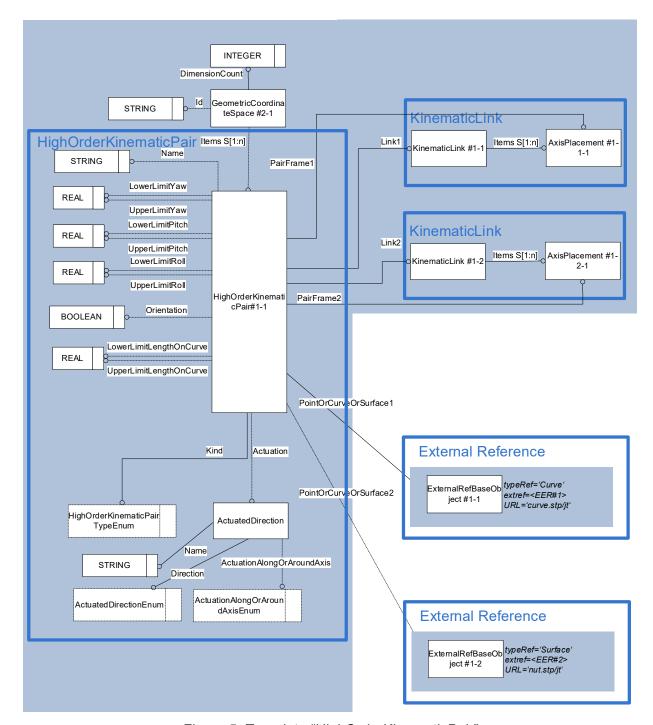



Figure 5: Template "HighOrderKinematicPair"





# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="n0:Mechanism" uid="kin--000000005FC5FC0--m">
        <RepresentationItem uidRef="kin--0000000004634060--kpair"/>
      </Items>
    </Representation>
  <Representations>
  <Items>
    <RepresentationItem xsi:type="n0:HighOrderKinematicPair" uid="kin--</pre>
0000000004634060--kpair">
            <CharacterString>Plunger-Disc-Spring</CharacterString>
      </Name>
      <Actuation>
            <ActuatedDirection uid="act--00000000006D3B150">
                  <ActuationAlongOrAroundAxis>Tz</ActuationAlongOrAroundAxis>
                  <Direction>bidirectional
                  <Name>
                        <CharacterString>command #1</CharacterString>
                  </Name>
            </ActuatedDirection>
      <Link1 uidRef="kin--0000000004634060--kpair--klink--0"/>
      <Link2 uidRef="kin--0000000004634060--kpair--klink--1"/>
      <PairFrame1 uidRef="kin--000000004634060--kpair--kframe--0"/>
      <PairFrame2 uidRef="kin--000000004634060--kpair--kframe--1"/>
      <PointOrCurveOrSurface1 uidRef="cv--0000000006D3B150--ei"/>
      <Kind>point on planar curve pair</Kind>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<ExternalRefBaseObject uid="cv--0000000006D3B150--ei" typeRef="Curve"
URL="./curve.stp">
  <extIdRef>
    <UUID>550e8400-e29b-11d4-a716-446655440000
  </extIdRef>
</ExternalRefBaseObject>
```

| Entity HighOrderKinematicPair attributes | Attribute type                         |
|------------------------------------------|----------------------------------------|
| External                                 | OPTIONAL ExternalItem                  |
| Name                                     | OPTIONAL DescriptorSelect              |
| Actuation                                | OPTIONAL SET[1:?] of ActuatedDirection |
| Link1                                    | KinematicLink                          |



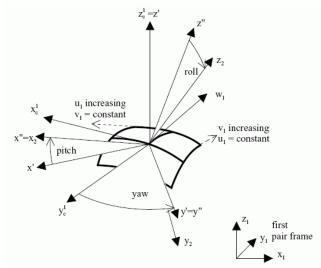


| Entity HighOrderKinematicPair attributes | Attribute type                               |
|------------------------------------------|----------------------------------------------|
| Link2                                    | KinematicLink                                |
| PairFrame1                               | AxisPlacement                                |
| PairFrame2                               | AxisPlacement                                |
| PropertyValueAssignment                  | OPTIONAL SET[1:?] of PropertyValueAssignment |
| PointOrCurveOrSurface1                   | ExternalPointOrCurveOrSurfaceSelect          |
| PointOrCurveOrSurface2                   | OPTIONAL ExternalPointOrCurveOrSurfaceSelect |
| Kind                                     | HighOrderKinematicPairTypeEnum               |
| LowerLimitPitch                          | OPTIONAL REAL                                |
| LowerLimitRoll                           | OPTIONAL REAL                                |
| LowerLimitYaw                            | OPTIONAL REAL                                |
|                                          |                                              |
|                                          |                                              |
| Orientation                              | OPTIONAL BOOLEAN                             |
| Range1                                   | OPTIONAL ExternalTrimmedCurveOrSurfaceSelect |
| Range2                                   | OPTIONAL ExternalTrimmedCurveOrSurfaceSelect |
| UpperLimitPitch                          | OPTIONAL REAL                                |
| UpperLimitRoll                           | OPTIONAL REAL                                |
| UpperLimitYaw                            | OPTIONAL REAL                                |

Table 7: "HighOrderKinematicPair" Attributes

#### Attribute recommendations

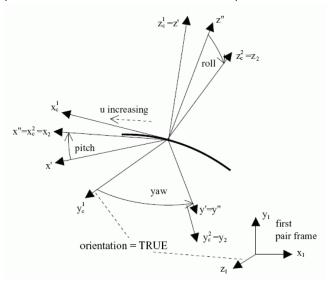
- **PointOrCurveOrSurface1:** the external reference to the first point, curve or surface that coincide at the joint. Use the "Point/Curve/Surface" template (see 4.1)
- **PointOrCurveOrSurface2:** the external reference to the second point, curve or surface that coincide at the joint. Use the "Point/Curve/Surface" template (see 4.1). Depending on the value of 'Kind', the value of this attribute need not be specified.
- **Kind**: the kind of pair. Where applicable, the following values shall be used:


| Enumeration value                          | Explanation                                                                                                                                                                                             |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| linear_flexible_and_pla-<br>nar_curve_pair | the pair describes a linear flexible link that moves (slides) around a rotating curve where the rotation axis of the curve is perpendicular to the direction of the linear flexible link and the curve. |
|                                            | Remark: Definition of Actuations needs to be clarified. According to Part 105, no lower/UpperLimits is allowed                                                                                          |





point\_on\_surface\_pair


the pair constrains the motion of two links such that a point defined on the second link always lies on a surface defined on the first link. The actual location of this point on the surface is called the contact point. The contact point specifies an origin of a frame called the contact frame. The local normal to the surface in the contact point coincides with the z-axis of the contact frame. The x-axis of the contact frame is parallel to the tangent to the iso-parameter line of the surface for the first surface parameter, which passes the contact point, and points into the direction where the first surface parameter increases.



Remark: no actuation is allowed. According to Part 105, lower/UpperLimits may be specified on Yaw, Pitch and Roll (not supported by CATIA nor NX)

point\_on\_planar\_curve\_pair

a pair that constrains the motion of two links such that a point defined on the second link always lies on a planar curve defined on the first link. The actual location of this point on the curve is called the contact point.

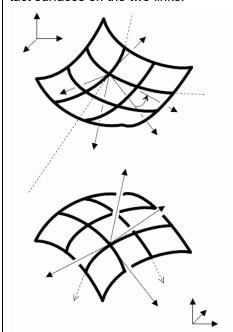


Remark: a rotational actuation along the curve may be specified (no value shall be specified in ActuatedDirection.ActuationAlongOrAroundAxis). According to Part 105, lower/UpperLimits may be specified on Yaw, Pitch and Roll (not supported by CATIA and NX)





| planar_curve_pair                                                       | a pair that constrains the motion of two links along a planar curve on each of the links. Both curves lie in a common plane.  u <sub>q</sub> increasing  y <sub>q</sub> second pair frame  orientation = FALSE                                                                                                                 |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rolling_curve_pair Symbol in NX (curve on curve):                       | Remark: no actuation is allowed. According to Part 105, no Lower/UpperLimit is allowed  a kind of a planar_curve_pair that specifies the rolling motion between the curves on the two links.  Remark: a actuation along one of the curves may be spec-                                                                         |
| sliding_curve_pair 'Slide Curve Coupler'/'Mechanical Cam Coupler' in NX | ified (not supported by NX). According to Part 105, a Lower/UpperLimit is allowed along the actuated curve (not supported by NX)  a kind of a planar_curve_pair that specifies the sliding motion between the curves on the two links.  Remark: no actuation is allowed. According to Part 105, no Lower/UpperLimit is allowed |

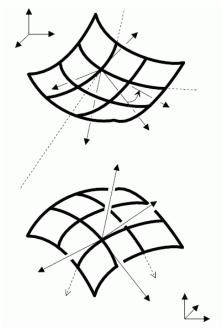





rolling\_surface\_pair

(not supported in NX and CATIA)

a pair that specifies a rolling motion between the two contact surfaces on the two links.




Remark: no actuation is allowed. According to Part 105, lower/UpperLimit may be specified around one axis

sliding\_surface\_pair

(not supported in NX and CATIA)

a pair that specifies a sliding motion between the two contact surfaces on the two links.



Remark: no actuation is allowed. According to Part 105, lower/UpperLimit may be specified around one axis





- Depending on the kind of kinematic pair, one or many of the following attribute pairs (lower/upper for roll, pitch or yaw) can be set at a time (Lower / Upper have both to be set).
  - o **LowerLimitPitch**: the minimum value of the (Y) pitch angle. The value of this attribute need not be specified.
  - UpperLimitPitch: the maximum value of the (Y) pitch angle. The value of this attribute need not be specified.
  - o **LowerLimitRoll**: the minimum value of the roll (Z) angle. The value of this attribute need not be specified.
  - UpperLimitRoll: the maximum value of the roll (Z) angle. The value of this attribute need not be specified.
  - LowerLimitYaw: the minimum value of the yaw (X) angle. The value of this attribute need not be specified.
  - UpperLimitYaw: the maximum value of the yaw (X) angle. The value of this attribute need not be specified.
- In the case PointOrCurveOrSurface1 is a Curve, the following attribute can be set.
  - LowerLimitLengthOnCurve: the minimum length position on PointOrCurve-OrSurface1. The value of this attribute need not be specified.
  - UpperLimitLengthOnCurve: the maximum length position on PointOrCurve-OrSurface1. The value of this attribute need not be specified.
- Orientation: a flag indicating axis-directions agreements. The value depends on the kind:
  - 'linear\_flexible\_and\_planar\_curve\_pair', 'planar\_curve\_pair', 'sliding\_curve\_pair', 'rolling\_curve\_pair': a flag indicating whether the x-axis-directions agree;
  - 'point\_on\_planar\_curve\_pair': a flag indicating whether the y-axis of the unrotated contact frame agrees with the z-axis of the pair frame on the first link;
  - o 'rolling\_surface\_pair', 'sliding\_surface\_pair': an indication of whether the z-direction of the second surface agrees with the z-direction of the first surface.

#### **Preprocessor Recommendations:**

- In case only one Point/Curve/Surface is involved, it shall be mapped into Model1, PointOrCurveOrSurface1 and Range1.
- The value in **Lower...** shall be smaller than the value in **Upper...**.
- Both KinematicLinks of a HighOrderKinematicPair have to be defined within the same GeometricCoordinateSpace than the Mechanism itself.
- The PointOrCurveOrSurface1/2 may be defined in distinct GeometricModels or within the GeometricModel of one of the involved parts.

Remark: depending on the legacy CAD system, not all Kinds are supported, and not all Limits/Ranges are supported.

Due to the required precision to calculate the Kinematics, it is always recommended to externally reference exact geometry (B-Rep). If the referenced geometry is a STEP Part 21 file, the recommended approach is by using in the UUIDs introduced with AP242 Edition 4. In case of JT files, the XT-BRep Moniker IDs can be used for the references. While it is technically possible to reference tessellated geometry, this is out of scope for the moment.





## 4.3.3 Template "LowOrderKinematicPairWithMotionCoupling"

This is a type of KinematicPair whose motion is constrained by simple translation or rotation and by one or more geometric parameters. This kind of Kinematic pair is used for screw pairs. Remark: a LowOrderKinematicPairWithMotionCoupling corresponds to a Screw joint in CATIA and NX

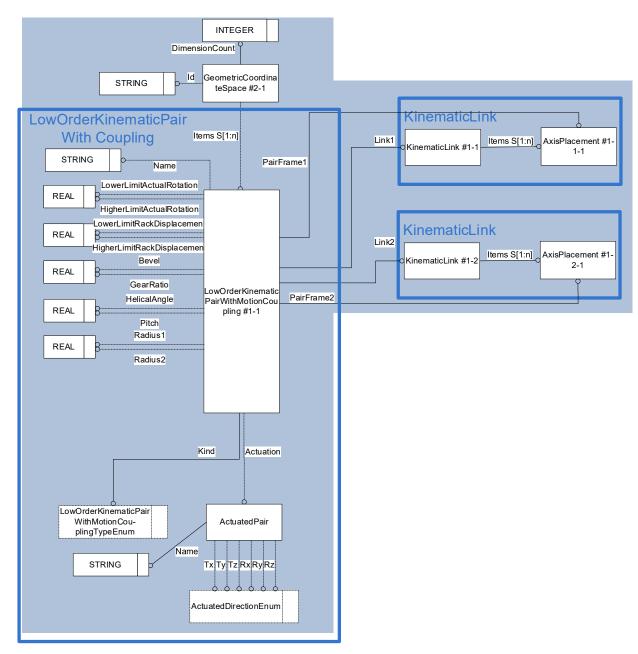



Figure 6: Template "LowOrderKinematicPairWithMotionCoupling"

The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax) for screw\_pair





```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="n0:Mechanism" uid="kin--000000000C0F70C0--m">
      <Items>
        <RepresentationItem uidRef"kin--0000000008050310--kpair"/>
      </Items>
      <Name>
            <CharacterString>Mechanism.1/CharacterString>
      </Name>
    </Representation>
  <Representations>
  <Items>
    <RepresentationItem xsi:type="bom:LowOrderKinematicPairWithMotionCou-</pre>
pling" uid="kin--0000000008050310--kpair">
            <CharacterString>Plunger-Disc-Spring</CharacterString>
      </Name>
      <Actuation>
            <ActuatedDirection uid="act--kin--000000008050310--kpair">
                  <ActuationAlongOrAroundAxis>Rz</ActuationAlongOrAroundAxis>
                  <Direction>bidirectional
                  <Name>
                        <CharacterString>command #1</CharacterString>
                  </Name>
            </ActuatedDirection>
      </Actuation>
      <Link1 uidRef="kin--0000000008050310--kpair--klink--0"/>
      <Link2 uidRef="kin--0000000008050310--kpair--klink--1"/>
      <PairFrame1 uidRef="kin--0000000008050310--kpair--kframe--0"/>
      <PairFrame2 uidRef="kin--00000000008050310--kpair--kframe--1"/>
      <Kind>screw pair</Kind>
      <LowerLimitActualRotation>0.000000000/LowerLimitActualRotation>
      <Pitch>25.000000000</Pitch>
      <UpperLimitActualRotation>180.000000000/UpperLimitActualRotation>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
```

| Entity LowOrderKinematicPairWithMo-<br>tionCoupling attributes (additionally to Kin-<br>ematicPair) | Attribute type                                  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Bevel                                                                                               | OPTIONAL PlaneAngleMeasure (REAL)               |
| GearRatio                                                                                           | OPTIONAL REAL                                   |
| HelicalAngle                                                                                        | OPTIONAL PlaneAngleMeasure (REAL)               |
| Kind                                                                                                | LowOrderKinematicPairWithMotionCouplingTypeEnum |
| LowerLimitActualRotation                                                                            | OPTIONAL PlaneAngleMeasure (REAL)               |
| LowerLimitRackDisplacement                                                                          | OPTIONAL LengthMeasure (REAL)                   |





| Entity LowOrderKinematicPairWithMo-<br>tionCoupling attributes (additionally to Kin-<br>ematicPair) | Attribute type                    |
|-----------------------------------------------------------------------------------------------------|-----------------------------------|
| Pitch                                                                                               | OPTIONAL LengthMeasure (REAL)     |
| Radius1                                                                                             | OPTIONAL LengthMeasure (REAL)     |
| Radius2                                                                                             | OPTIONAL LengthMeasure (REAL)     |
| UpperLimitActualRotation                                                                            | OPTIONAL PlaneAngleMeasure (REAL) |
| UpperLimitRackDisplacement                                                                          | OPTIONAL LengthMeasure (REAL)     |

Table 8: "LowOrderKinematicPairWithMotionCoupling" Attributes

## Attribute recommendations

Bevel: deprecated

GearRatio: deprecatedHelicalAngle: deprecated

• **Kind**: the kind of pair. Where applicable, the following values shall be used:

| Enumeration value                    | Explanation                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gear_pair                            | Deprecated => it is recommended to use KinematicPair-WithMotionCoupling (see section 4.3.4)                                                                                                                                                                                                                                                                                                                     |
| linear_flexible_and_pin-<br>ion_pair | Deprecated => it is recommended to use KinematicPair-WithMotionCoupling (see section 4.3.4)                                                                                                                                                                                                                                                                                                                     |
| rack_and_pinion_pair                 | Deprecated => it is recommended to use KinematicPair-WithMotionCoupling (see section 4.3.4)                                                                                                                                                                                                                                                                                                                     |
| screw_pair                           | a pair that constrains the motion between two adjacent links to a rotation about, and translation along, a common axis, where the translation is proportional to the rotation. The factor of proportionality is given by pitch which defines the translational displacement for one full rotation. The frames are defined on each of the links such that the z-axes coincide and the positive directions agree. |
|                                      | Remark: AP242 allows to define either a rotational or a translational actuation (translational not supported by NX). According to Part 105, Pitch is mandatory and either translational or rotational lower/UpperLimits may be specified (in accordance with the actuation, if any), Neither Bevel, GearRatio, HelicalAngle nor Radius1/2 is allowed.                                                           |





- Depending on the kind of kinematic pair, one of the following attributes pairs (lower/upper for rotation or displacement) can be set at a time (Lower / Upper have both to be set).
  - LowerLimitActualRotation: the minimum rotation value of the second link around the first link. The value of this attribute need not be specified.
  - UpperLimitActualRotation: the maximum rotation value of the second link around the first link. The value of this attribute need not be specified.
  - LowerLimitRackDisplacement: the minimum translation value of the second link along the first link. The value of this attribute need not be specified.
  - UpperLimitRackDisplacement: the maximum translation value of the second link along the first link. The value of this attribute need not be specified.
- Pitch: the pitch (axial distance between two threads) of the screw in the case that the kind is of type screw\_pair. The value of this attribute need not be specified.

Radius1: deprecatedRadius2: deprecated

## **Preprocessor Recommendations:**

 Both KinematicLinks of a LowOrderKinematicPairWithMotionCoupling have to be defined within the same GeometricCoordinateSpace than the Mechanism itself.

## 4.3.4 Template "KinematicPairWithMotionCoupling"

Newly introduced with Edition 4, this is a type of KinematicPair thas specified a motion constrain defined by more than one KinematicPair.

This kind of Kinematic pair is used for gear, linear flexible pinion, rack and pinion, two or three joint couplers and universal.

Remark: a KinematicPairWithMotionCoupling corresponds to a Gear, Cable, Rack in CATIA and NX, and to a two/three joint coupler in NX.





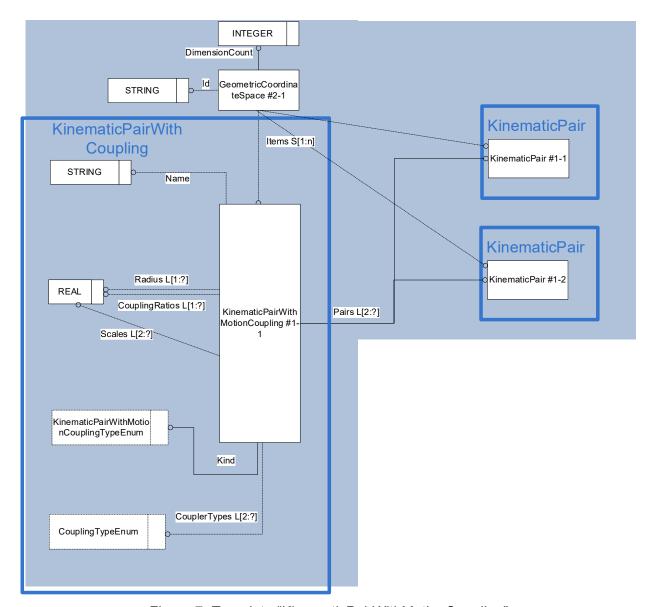



Figure 7: Template "KinematicPairWithMotionCoupling"

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax) for rack\_and\_pinion\_pair





```
</Representations>
  <Items>
    <RepresentationItem xsi:type="n0:KinematicPairWithMotionCoupling"</pre>
uid="kin--00000000000005--kcoup">
      <Name>
        <CharacterString>Rack.1</CharacterString>
      </Name>
      <CouplingRatios>1.000000</CouplingRatios>
      <Kind>rack and pinion pair</Kind>
      <Pairs>
        <KinematicPair uidRef="kin--0000000000000003--kpair"/>
        <KinematicPair uidRef="kin--0000000000000004--kpair"/>
      </Pairs>
    </RepresentationItem>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
000000000000003--kpair">
      <Name>
        <CharacterString>Prismatic.1</CharacterString>
      <Link1 uidRef="kin--000000000000003--kpair--klink--1"/>
      <Link2 uidRef="kin--000000000000003--kpair--klink--2"/>
      <PairFrame1 uidRef="kin--00000000000003--kpair--kframe--1"/>
      <PairFrame2 uidRef="kin--00000000000003--kpair--kframe--2"/>
      <Kind>prismatic pair</Kind>
      <LowerLimitActualTranslationZ>-10.000000/LowerLimitActualTranslationZ>
      <UpperLimitActualTranslationZ>10.000000/UpperLimitActualTranslationZ>
    </RepresentationItem>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
0000000000000004--kpair">
      <Name>
        <CharacterString>Revolute.2</CharacterString>
      </Name>
      <Actuation>
            <ActuatedDirection uid="act--kin--0000000000000004--kpair">
                 <ActuationAlongOrAroundAxis>Rz</ActuationAlongOrAroundAxis>
                 <Direction>bidirectional
                  <Name>
                       <CharacterString>Position Motor (1)</CharacterString>
                 </Name>
            </ActuatedDirection>
      </Actuation>
      <Link1 uidRef="kin--000000000000004--kpair--klink--1"/>
      <Link2 uidRef="kin--000000000000003--kpair--klink--2"/>
      <PairFrame1 uidRef="kin--00000000000004--kpair--kframe--1"/>
      <PairFrame2 uidRef="kin--000000000000004--kpair--kframe--2"/>
      <Kind>revolute pair</Kind>
      <LowerLimitActualRotationZ>0.000000/LowerLimitActualRotationZ>
      <UpperLimitActualRotationZ>90.00000</UpperLimitActualRotationZ>
    </RepresentationItem>
```





| Entity KinematicPairWithMotionCoupling attributes | Attribute type                              |
|---------------------------------------------------|---------------------------------------------|
| CouplingRatios                                    | OPTIONAL LIST [1:?] OF REAL                 |
| CouplingTypes                                     | OPTIONAL LIST[2:?] OF CouplingTypeEnum      |
| Kind                                              | KinematicPairWithMotionCouplingTypeEnum     |
| Pairs                                             | LIST [2:?] OF KinematicPair                 |
| Radius                                            | OPTIONAL LIST [1:?] OF LengthMeasure (REAL) |
| Scales                                            | OPTIONAL LIST [2:?] OF REAL                 |

Table 9: "KinematicPairWithMotionCoupling" Attributes

#### Attribute recommendations

CouplingRatios: the displacement ratio of Pairs[1] to Pairs[2], of Pairs[2] to Pairs[3], etc.

For rack\_and\_pinion\_pair, it is the rack translation distance per turn of the pinion. For gear\_pair, it is the rotation ratio of Link2 per turn of the Link1. For linear\_flexible\_and\_pinion\_pair, it is the relative translation speed of Pairs[2] relatively to Pairs[1].

CouplingTypes: for two\_joint\_coupler or three\_joint\_coupler, the kind of coupling that
applies to each pair.

| Enumeration value | Explanation                                                  |
|-------------------|--------------------------------------------------------------|
| rotation          | The coupling applies to the rotation of the KinematicPair    |
| translation       | The coupling applies to the translation of the KinematicPair |

• **Kind**: the kind of pair. Where applicable, the following values shall be used:

| Enumeration value                                  | Explanation                                                                                                                                                                                                                                                    |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| composed_homokinetic_pair<br>(not supported by NX) | The combination of two universal_pairs that constrains the motion between two adjacent links:                                                                                                                                                                  |
| (not cappointed by 100)                            | <ul> <li>the second link (Link2) of both pairs shall be identical</li> <li>to be homokinetic, both fixed parts (the first link (Link1) of both pairs shall be parallel, or der angle between Link1 and Link2 of each universal_pair shall be equal.</li> </ul> |
|                                                    | A rotational actuation may be defined on one of the revolute_pairs involved in both universal_pairs. According to Part 105, Lower/UpperLimits may be specified on each revolute_pair; Radius or CouplingRatios do not apply.                                   |
| gear_pair                                          | The combination of two revolute_pairs that constrains the motion between two adjacent links:                                                                                                                                                                   |
|                                                    | <ul> <li>a rolling motion of the second link (Link2) of the second revolute_pair (Pairs[2] along the second link (Link2) of the first revolute_pair (Pairs[1]).</li> </ul>                                                                                     |
|                                                    | To measure the motion of the second link with respect to the first link, a frame is defined on each of the links such                                                                                                                                          |





|                                                       | that the origin lies in the center of the rolling circle of the respective link.                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | A rotational actuation may be defined on one of both revolute_pairs. According to Part 105, Lower/UpperLimits may be specified on each revolute_pair; Radius[1]+[2] or CouplingRatios[1] is mandatory (CouplingRatio = Radius[1]/Radius[2]).                                                                                                                                                                            |
|                                                       | If both Y axles have opposite directions, or if the rotation direction of both gears shall be the same, CouplingRatios[1] shall have a negative value (not supported by NX).                                                                                                                                                                                                                                            |
| linear_flexible_and_pinion_pair ('cable' in NX and in | The combination of two prismatic_pairs that constrains the motion between two non-adjacent links:                                                                                                                                                                                                                                                                                                                       |
| CATIA)                                                | - a sliding motion of the second link (Link2) of the first pair coupled with a sliding motion of the second link (Link2) of the second pair.                                                                                                                                                                                                                                                                            |
|                                                       | A translation actuation may be defined on one of both pairs According to Part 105, Lower/UpperLimits may be specified on the actuation.translation of Link1 or Link2; CouplingRatios[1] is mandatory. If both Z axles have opposite directions, CouplingRatios[1] shall have a negative value.                                                                                                                          |
| rack_and_pinion_pair                                  | The combination of one prismatic_pair and one revolute_pair that constrains the motion between two adjacent links:                                                                                                                                                                                                                                                                                                      |
|                                                       | <ul> <li>a rolling motion of the second link (Link2) of the revolute_pair along the second link (Link2) of the prismatic_pair.</li> </ul>                                                                                                                                                                                                                                                                               |
|                                                       | The rotation axis of the pinion (Link2) is perpendicular to the direction of the rack (Link1)                                                                                                                                                                                                                                                                                                                           |
|                                                       | Either a rotational actuation, or a translational actuation (translational not supported by NX) may be defined. According to Part 105, Lower/UpperLimits may be specified on the actuation; Radius[1] or CouplingRatios[1] is mandatory (CouplingRatio = 2.Pl.Radius). If both Y axles have opposite directions, Radius shall not be specified and CouplingRatios[1] shall have a negative value (not supported by NX). |





| two_joint_coupler   | The combination of two pairs out of prismatic_pair, revolute_pair and/or cylindrical_pair that constrains the motion between two non-adjacent links:                                                                                                                                                                                                                                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | - the motion of the second link (Link2) of the first pair (Pairs[1] to the second link (Link2) of the second pair (Pairs[2]).                                                                                                                                                                                                                                                            |
|                     | It is a generalization of gear_pair, linear_flexible_and_pin-ion_pair and rack_and_pinion_pair.                                                                                                                                                                                                                                                                                          |
|                     | One actuation <b>has to</b> be defined on one of the pairs (rotational on the revolute_pair, translational on prismatic_pair, rotational or translational on the cylindrical_pair). Lower/UpperLimits may be specified on the actuation; Scales[1]+[2] are mandatory. If both Z axles have opposite directions, resp. Scales[1] or [2] shall have a negative value.                      |
| three_joint_coupler | The combination of three pairs out of prismatic_pair, revolute_pair and/or cylindrical_pair that constrains the motion between three non-adjacent links:                                                                                                                                                                                                                                 |
|                     | <ul> <li>the motion of the second link (Link2) of the first pair (Pairs[1] to the second link (Link2) of the second pair (Pairs[2])</li> <li>the motion of the second link (Link2) of the second pair (Pairs[2] to the second link (Link2) of the third pair (Pairs[3])</li> </ul>                                                                                                       |
|                     | Two actuations <b>have to</b> be defined on two of the pairs (rotational on the revolute_pair(s), translational on prismatic_pair(s), rotational or translational on the cylindrical_pair(s)). Lower/UpperLimits may be specified on the actuations; Scales[1]+[2]+[3] are mandatory. If both Z axles have opposite directions, resp. Scales[1], [2] or [3] shall have a negative value. |

- Radius: for gear\_pair and rack\_and\_pinion\_pair, the radius of the rolling circle of Link2 for each revolute pair.
- Scales: for two\_joint\_coupler or three\_joint\_coupler, the displacement speed of one pair relatively to the other pairs. It is a decimal value without unit and can be positive. The kinematic solver of the CAD system computes the displacement of each joint having a driver and derives the displacement of the remaining joint that has no driver according to the following coupling formula that involves all the displacements 'd' and all the scales 's':
  - $\circ$  s1.d1 + s2.d2 = 0 (for a two joint coupler)
  - o s1.d1 + s2.d2 + s3.d3 = 0 (for a three\_joint\_coupler)





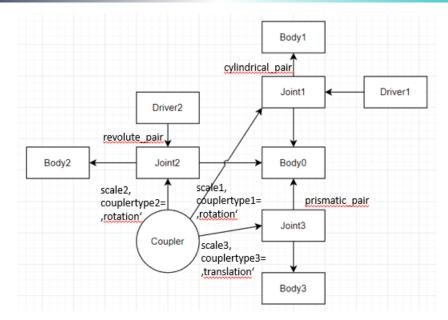



Figure 8: Example of a three\_joint\_coupler (3 pairs and 2 actuations) involving 4 KinematicLinks

## **Preprocessor Recommendations:**

- For two\_joint\_coupler and three\_joint\_coupler, there is no restriction about the parts involved as Link1/Link2 of one pair to their re-use or not in the other combined pair(s). For example:
  - o the Link1 of each combined pair may be the BaseLink of the Mechanism or different
  - a part used as Link1 (fixed part) in one pair may be used as Link2 (moving part) of the other combined pair(s)

So a two joint coupler may involve 2 to 4 Links and a three joint coupler 3 to 6 Links

- For gear\_pair, linear\_flexible\_and\_pinion\_pair and gear\_pair, Link1 of both combined pairs
  may be the BaseLink of the Mechanism or the same non-BaseLink part or different, but both
  Link2 have to be different.
- For composed\_homokinetic\_pair, no Link of both combined pairs may be the BaseLink of the Mechanism but all Links have to be different, except both 'middle' Links which have to be identical.
- Since not supported by NX, it is recommended to map composed\_homokinetic\_pair as four revolute\_pairs (around both axis of each cross).
- The value of Scales[n] shall apply to the pair mapped to Pairs[n].
- The value of CouplingTypes[n] shall apply to the pair mapped to Pairs[n]
- If Pairs[n] includes multiple DOFs like cylindrical\_pair, one of 'rotation' or 'translation' has to be chosen for CouplerTypes[n].
- If Pairs[n] includes only one DOF like revolute\_pair or prismatic\_pair, CouplerTypes[n] has to be consistent with the DOF (here 'rotation' resp. 'translation').
- Having too few actuations or too many actuations (over-definition) in a two\_joint\_coupler or a three joint coupler is tolerated, but the coupler will not run.
- KinematicPairWithMotionCoupling supports:
  - more than 3 values in Pairs[]





- o to define CouplingRatios/Radius for more than 2 values in Pairs[]
- o any further combination of LowOrder/HighOrder KinematicPairs

but there is no kind of pairs in scope at the moment.

• IP1: As a subtype of RepresentationItem, KinematicPairWithMotionCoupling shall be used directly or indirectly, in at least one KinematicLink.

Remark: depending on the legacy CAD system, not all kinds are supported, and not all Limits/Ranges are supported.





## 4.4 Template "Mechanism"

A Mechanism contains all constraints that describe the kinematics of a given assembly.

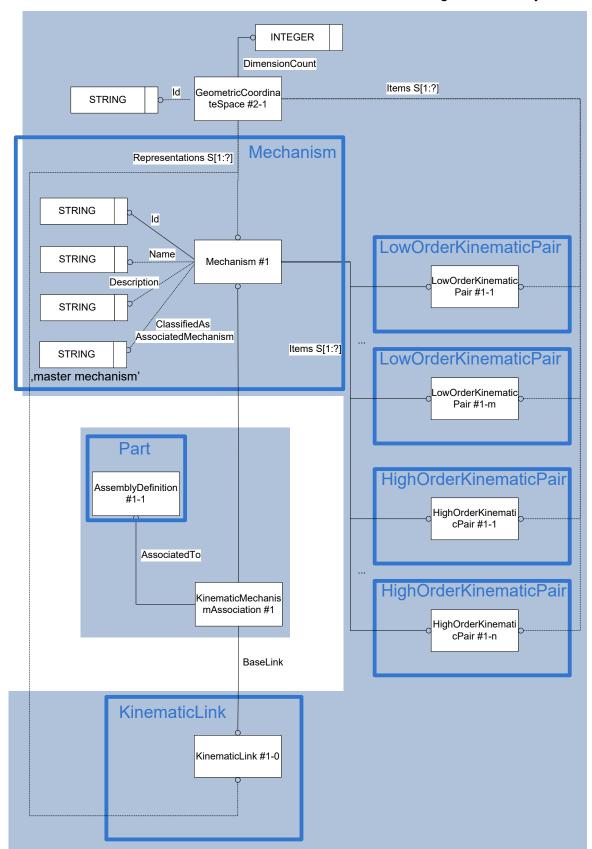



Figure 9: Template "Mechanism"





# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="n0:Mechanism" uid="kin--000000005FC5FC0--m">
      <Id id="Kurvengetriebe"/>
      <Items>
        <RepresentationItem uidRef="kin--0000000004633D60--kpair"/>
        <RepresentationItem uidRef="kin--0000000004633EE0--kpair"/>
        <RepresentationItem uidRef="kin--0000000004634060--kpair"/>
      </Items>
    </Representation>
    <Representation xsi:type="n0:KinematicLink" uid="kin--0000000004633D60--</pre>
kpair--klink--1">
      <Id id="/NULL"/>
      <Ttems>
        <RepresentationItem uidRef="kin--0000000004633D60--kpair--kframe--</pre>
0"/>
      </Items>
    </Representation>
  <Representations>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
0000000004633D60--kpair">
    </RepresentationItem>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
0000000004633EE0--kpair">
    </RepresentationItem>
    <RepresentationItem xsi:type="n0:HighOrderKinematicPair" uid="kin--</pre>
0000000004634060--kpair">
    </RepresentationItem>
    <RepresentationItem uid="kin--000000004633D60--kpair--kframe--0"</pre>
xsi:type="n0:AxisPlacement">
      <Axis>-1.0000000000,0.000000000,0.0000000000
      <Position>0.0000000000,-5.000000000,15.0000000000</Position>
      <RefDirection>0.0000000000,-1.000000000,0.000000000</RefDirection>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<Part uid="p--0000000012B9CF70">
  <Versions>
    <PartVersion uid="pv--000000012B9CF70--id1">
        <PartView xsi:type="n0:AssemblyDefinition" uid="pvv--</pre>
000000012B9CF70--id1">
          <KinematicMechanismAssociation uid="kin--000000005FC5FC0--kma"</pre>
xsi:type="n0:KinematicMechanismAssociation">
            <AssociatedMechanism uidRef="kin--000000005FC5FC0--m"/>
```





| Entity Mechanism attributes                  | Attribute type                                                    |
|----------------------------------------------|-------------------------------------------------------------------|
| ClassifiedAs                                 | OPTIONAL SET[1:?] of Classification                               |
| Description                                  | OPTIONAL DescriptorSelect                                         |
| ld                                           | Id                                                                |
| Items                                        | SET[1:?] of KinematicPair                                         |
| Name                                         | OPTIONAL DescriptorSelect                                         |
| RepresentationTypes                          | OPTIONAL SET[1:?] of ClassSelect                                  |
| RetentionPeriod                              | OPTIONAL SET[1:?] RetentionPeriod                                 |
| VersionId                                    | OPTIONAL IdentifierSelect                                         |
| RepresentationRelationship                   | OPTIONAL SET[1:?] OF RepresentationRelationship                   |
| ActivityAssignment                           | OPTIONAL SET[1:?] of ActivityAssignment                           |
| ApprovalAssignment                           | OPTIONAL SET[1:?] of ApprovalAssignment                           |
| DateAndPersonAssignment                      | OPTIONAL SET[1:?] of DateAndPersonAssignment                      |
| DatetimeAssignment                           | OPTIONAL SET[1:?] of DateTimeAssignment                           |
| EffectivityAssignment                        | OPTIONAL SET[1:?] of EffectivityAssignment                        |
| EventAssignment                              | OPTIONAL SET[1:?] of EventAssignment                              |
| InformationUsageRightAssignment              | OPTIONAL SET[1:?] of InformationUs-ageRightAssignment             |
| ModelPropertyAssignment                      | OPTIONAL SET[1:?] of ModelPropertyAssignment                      |
| OrganizationOrPersonInOrganizationAssignment | OPTIONAL SET[1:?] of OrganizationOrPersonInOrganizationAssignment |
| PropertyDefinitionAssignment                 | OPTIONAL SET[1:?] of PropertyDefinitionAssignment                 |
| PropertyValueAssignment                      | OPTIONAL SET[1:?] of PropertyValueAssignment                      |
| SecurityClassificationAssignment             | OPTIONAL SET[1:?] of SecurityClassificationAssignment             |
| SuppliedObjectRelationship                   | OPTIONAL SET[1:?] of SuppliedObjectRelationship                   |
| TimeIntervalAssignment                       | OPTIONAL SET[1:?] of TimeIntervalAssignment                       |
| MechanismState                               | OPTIONAL SET[1:?] of MechanismState                               |

Table 10: "Mechanism" Attributes





#### Attribute recommendations

- ClassifiedAs: the classifications of the Mechanism. The value of this attribute shall be
  'master mechanism' (normal case) or 'imported dress-up mechanism' (in case of 0) or
  'local dress-up mechanism' for a dress-up if defined locally on the master mechanism
  (special case of 4.8 where both 'master mechanism' and 'local dress-up mechanism' reference to the same assembly node via AssociatedTo.
- **Description**: if a dress-up is defined on this mechanism, the name of the dress-up, otherwise: need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **Id**: the identifier or set of identifiers for the Mechanism. Use "Identifier" template (see [242-PAS] 4.6.6).
- **Items**: the set of KinematicPairs of the Mechanism
- Name: the words or set of words by which the Mechanism is known. The value of this attribute need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **PropertyValueAssignment**: to assign a PropertyValue to the Mechanism. Use the "PropertyAssignment" template (see [242-PAS] 6.2).
- Other attributes than these are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.

| Entity KinematicMechanismAssociation attributes | Attribute type                                     |
|-------------------------------------------------|----------------------------------------------------|
| AssociatedMechanism                             | Mechanism                                          |
| BaseLink                                        | KinematicLink                                      |
| AssociationObjectRelationship                   | OPTIONAL SET[1:?] of AssociationObjectRelationship |

Table 11: "KinematicMechanismAssociation" Attributes

#### Attribute recommendations

- AssociatedMechanism: the Mechanism. Use "Mechanism" template (see 4.4).
- **BaseLink**: a KinematicLink that plays the role of a base (fixed part(s)) for the Mechanism. *Preprocessor Recommendations*:
- Each Mechanism shall be associated to an AssemblyDefinition and have a unique Baselink (through KinematicMechanismAssociation).
- If the sending system supports multiple fixed parts belonging to different KinematicLinks, one
  of the KinematicLinks shall be mapped as BaseLink and the other ones shall be constrained
  to it via KinematicPairs of kind fully\_constrained\_pair.
- The KinematicLink referenced by BaseLink shall be involved as Link1 (or Link2) of at least one KinematicPair associated to the Mechanism with an AxisPlacement as PairFraime1 (or PairFrame2) being an identity matrix
- All the Occurrences referenced by the KinematicLinks of the KinematicPairs of a Mechanism shall be component parts of the assembly structure on which the Mechanism is defined.
- All the KinematicPairs of a Mechanism have to be defined within the same GeometricCoordinateSpace than the Mechanism itself.





- Therefore, it is also recommended that the length unit and the angle unit used are the same throughout the kinematic structure of the mechanism, and be same as the length unit used for the assembly structure and the geometry itself.
- According [242-PAS] 6.1, the angle unit used for the Lower/UpperLimits of KinematicPairs shall be defined in GeometricCoordinateSpace.Units, while the length unit can be overtaken from the one defined in ExchangeContext.DefaultUnit rather than being defined redundantly in the GeometricCoordinateSpace.
- It is not recommended to exchange kinematic constraints based on single bodies within a CAD model, since these cannot be supported with the current mapping.

### 4.5 Mechanism Structure

Most CAD systems require that the assembly nodes involved in KinematicPair may not have further KinematicPairs between their components:

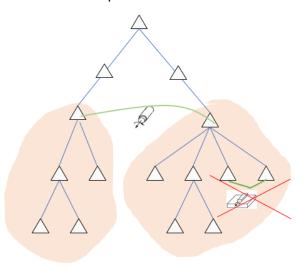



Figure 10: Violation of rigidity rule within an assembly involved in a KinematicPair

Exceptions are so-called 'flexible assemblies' where each occurrence may have a different position and/or shape (currently out of scope, even if described in [242-PAS] 7.1 regarding Flexible Parts)

and defining a separate mechanism for the whole assembly node or a subset of it (currently out of scope).

- 1. In some simple cases:
  - In NX and newer 3DExp releases each rigid group contains only one occurrence of an assembly node or single part and can be mapped to a KinematikLink => the number of rigid groups is the number of moving parts/assemblies.
  - In CATIA and older 3DExp releases, the kinematic mechanism can be built only upon the
    direct children of the assembly node on which the mechanism is defined => each moving
    part/assembly is also associated to one KinematicLink.

#### Postprocessor Recommendations:

As long as the rigid groups involve only direct children of the assembly node on which the mechanism is defined, no special import mapping is required. The only additional information coming from CAD system is the name of the rigid groups (to be mapped to KinematicLink.ld).





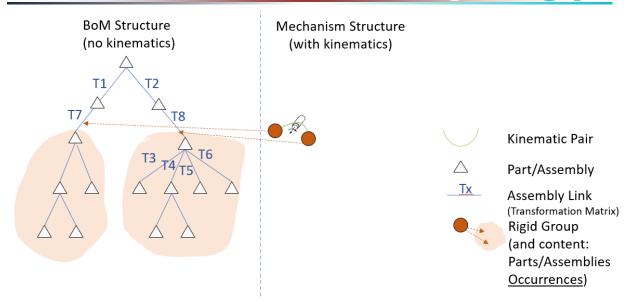



Figure 11: Case #1: rigid groups contain only one part/assembly that is not a direct component of the assembly on which the mechanism is defined

If this is not the case, since according to the [242-PAS] 7.1, each assembly component shall have its own <u>Occurrence</u> for each usage, the relevant occurrences from the BoM structure shall be duplicated to Occurrences in a Mechanism structure:

- The 3D positioning of the component of a rigid group shall be copied from the AxisPlacements used for its placement within the BoM Structure to the Mechanism structure. All matrices along the product structure between the assembly node where the mechanism is defined and the component of the rigid group in the BoM structure have to be multiplicated for the flat structure of the mechanism structure (in the example below: T1\*T7 and T2\*T8).
- Just like the rigid groups, the Mechanism structure shall be only a flat structure, so the
  use of SpecifiedOccurrence is not required for the Mechanism structure (even if a SpecifiedOccurrence is involved in the BoM structure).
- The kinematic pairs are mapped between the additional assembly nodes.
- Additionally, an overall top level assembly node has to build the top level assembly nodes
  of the BoM structure and of the mechanism structure (with identity matrix). This is necessary for exporting the logical links between both structure (see OccurrenceRelationships
  below).
- The top level assembly node of the Mechanism structure shall have the following classification 'kinematic mechanism structure'.
- Each occurrence from the BoM structure and its corresponding occurrence in the Mechanism structure shall be related. During re-export, this enables to map an OccurrenceRelationship having RelationType = 'kinematic definition'. Relating shall refer to the Single-Occurrence in the Mechanism structure and Related to the Single- or SpecifiedOccurrence in the BoM structure.
- All the assembly nodes and single parts from the BoM Structure that are not built into the Kinematic Mechanism structure do not move at all.
- A CAD system like CATIA which does not support rigid groups shall derive the Mechanism Structure from the Mechanism definition during import and (in case of bidirectional exchange) should export both the BoM structure and the Mechanism structure and the





OccurrenceRelationships mentioned above. The Part.Id of the top assembly node could be mapped to Mechanism.Id (i.e. the name of the kinematic mechanism).

- During import to a CAD system which supports rigid groups, it shall:
  - import the BoM structure
  - o read the flat Mechanism Structure as being the rigid groups
  - read the OccurrenceRelationships in order to know which Single- or SpecifiedOccurrence from the BoM structure is involved in the KinematicLink of each Rigid Group.
- During export from a CAD system which supports complex rigid groups, it shall:
  - o export only the BoM structure (it is not necessary to map a Mechanism structure)
  - the name of the rigid groups shall be mapped to KinematicLink.ld and may involve SpecifiedOccurrences.
- The same recommendations apply to each mechanism within the AP242 XML file.
- If an assembly node is involved in more than one rigid group of different mechanisms, the same top level assembly node for the mechanism structure may be reused as long as all mechanisms are defined on the same assembly node of the BoM structure. Otherwise, a new top level assembly node shall be mapped for each mechanism structure.

#### Postprocessor Recommendations:

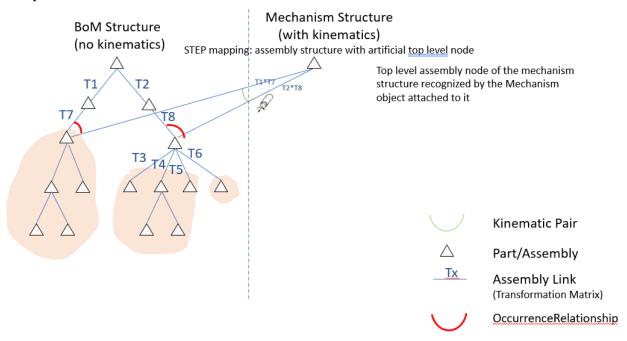



Figure 12: Case #1: use of additional assembly nodes

Remark: a single part / assembly node occurrence shall *not* be associated to multiple rigid groups, neither directly nor indirectly (through intermediate assembly nodes). This is indeed possible in NX but may lead to a conflict.

2. In other cases, the rigid groups (like in NX or in newer 3DExp releases) contain more than one part/assembly occurrence. They all move according to the same kinematic law (i.e. they





are rigid among each other). Here also, a Mechanism Structure is necessary to map them to CAD systems that do not support rigid groups..

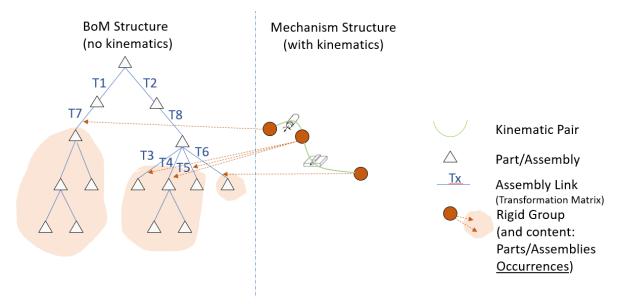



Figure 13: Case #2: rigid groups made of more than one part/assembly

Since some CAD systems like CATIA support only one part/assembly occurrence per KinematicLink these rigid groups cannot be mapped, but rather as an additional assembly node on which the KinematicLink can apply.

All mapping recommendations from Case #1 do also apply to Case #2, plus the following:

- Here not only the matrices along the BoM Structure shall be multiplicated (in the example below: T2\*T8\*T3), but an additional assembly node shall be mapped for each rigid group having more than one component. The 3D placement of this additional assembly node within the top assembly node of the mechanism structure shall be the identity matrix.
- If an assembly node is involved in more than one rigid group of different mechanisms, it can be reused in each mechanism structure as long as the mechanisms are defined on the same assembly node. Otherwise, a new assembly node shall be mapped for this rigid group for each mechanism structure.





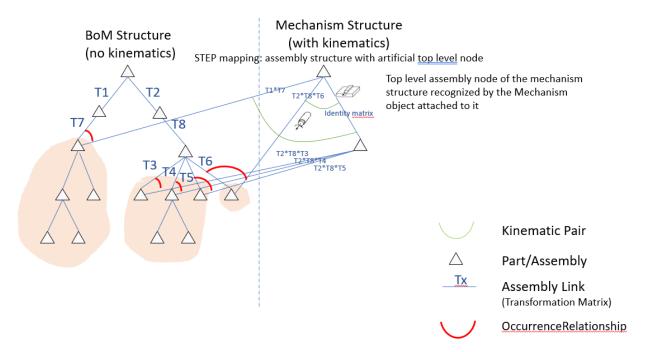



Figure 14: Case #2: use of additional assembly nodes

In the CAD systems (like NX and newer 3DExp releases) using the concept of rigid groups, the Mechanism always has implicitly the same initial position than in the BoM structure. In other CAD systems, see next bullet point.

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

T.B.S. (out of Siemens example)

3. In some CAD systems (like CATIA), the Kinematic Mechanism structure can be defined and maintained independently from the BoM structure. Therefore, it may have its own 3D positioning => the Mechanism may have another initial position than in the BoM structure.





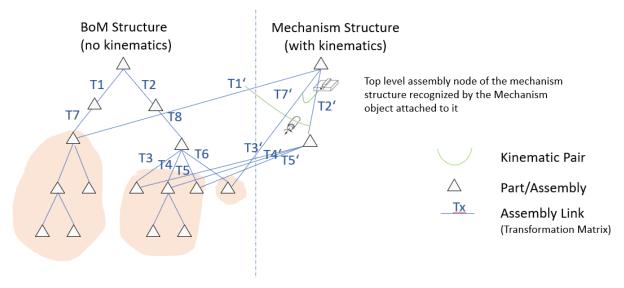



Figure 15: Case #3: different initial position in BoM and Mechanism Structures

### **Preprocessor Recommendations:**

Since the conversion of the 3D positioning within the Mechanism structure (transformation matrices used to position the 'points of contact' AxisPlacements of the KinematicLinks so that it fits to the initial position of the BoM Structure (conform to NX)) can be very complex:

A CAD system like CATIA shall export only the mechanism structure (not the BoM structure). In this case, the CATIA mechanism structure becomes the BoM structure in NX.
 Otherwise, the BoM structure shall be imported in NX as a distinct structure, without kinematics (as it is in CATIA).

### 4.6 Hierarchy of Mechanisms

Most CAD systems allow to define mechanisms on several levels of the assembly structure. The default behavior is, that a mechanism defined on a sub-assembly applies implicitly to all occurrences of this sub-assembly within a parent assembly.

The definition of different mechanisms on the Single/SpecifiedOccurrences of the same assembly within a parent assembly is supported by CAD systems like 3DExp (and NX?), but it is not yet in scope of this document.

### 4.7 Template "Import Mechanism"

A Mechanism defined on a given assembly node A1 may be imported on another assembly node A2 built (within the product structure) above A1. The original mechanism is called the master mechanism, while the other is called the imported mechanism. All the kinematic constraints of the master mechanism may be used by the imported dress-up mechanism (but may only be modified in the master mechanism).

This feature is used for dress-ups, reusability and refactoring (which reuse the kinematic pairs defined in the master mechanism on a part occurrence of A1 and associate them with occurrences of further parts or assemblies built beyond the A2), see section 4.5 for more details.





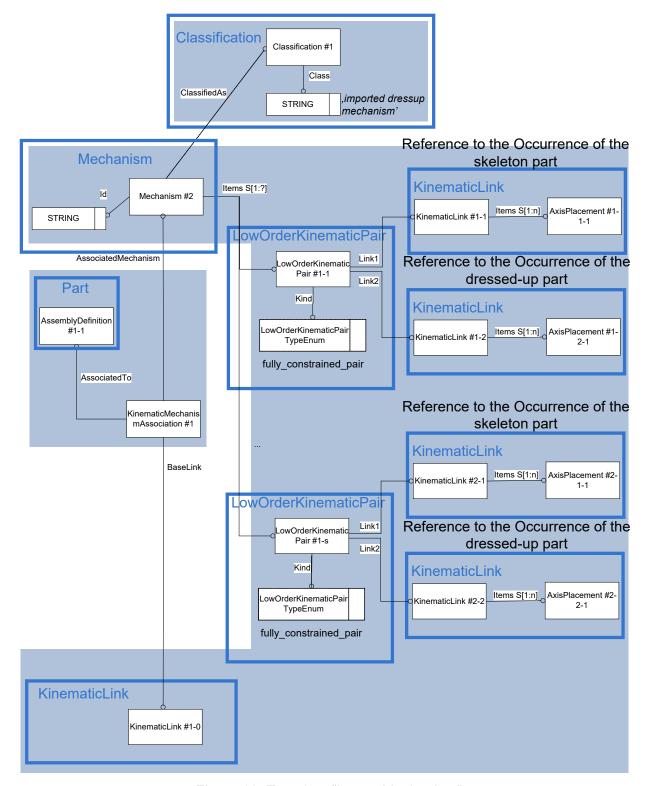



Figure 16: Template "Import Mechanism"

In the special case where the dress-up mechanism is defined on the local Mechanism, both are defined on the same assembly node A1. The original mechanism is called the master mechanism, while the other is called the local dress-up mechanism. All the kinematic constraints of the master mechanism may be used by the dress-up mechanism (but may only be modified in the master mechanism).





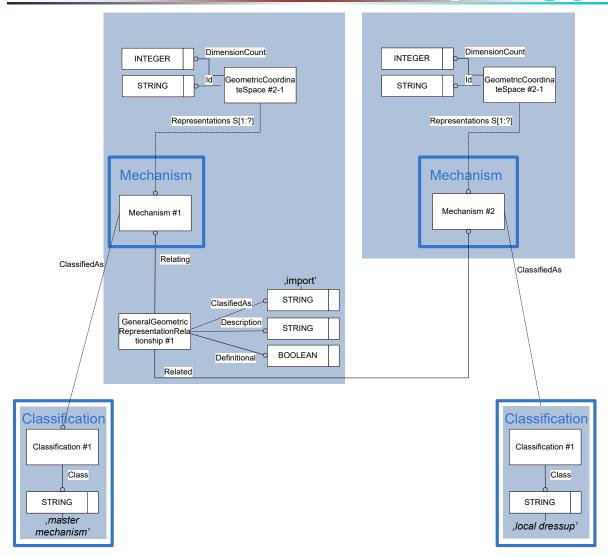


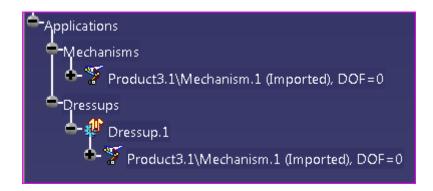

Figure 17: Template "Import Mechanism" Special Case for Local Dressup

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="n0:Mechanism" uid="kin--0000000006039F00--m">
     <Id id="kin--0000000006039F00--m"/>
      <RepresentationRelationship uid="kin--0000000006039F00--mrel"</pre>
xsi:type="n0:GeneralGeometricRepresentationRelationship">
        <Definitional>true
        <Related uidRef="kin--0000000006039F00--m2"/>
        <RelationType>import</RelationType>
      </RepresentationRelationship>
    </Representation>
  <Representations>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
```






## **Preprocessor Recommendations:**

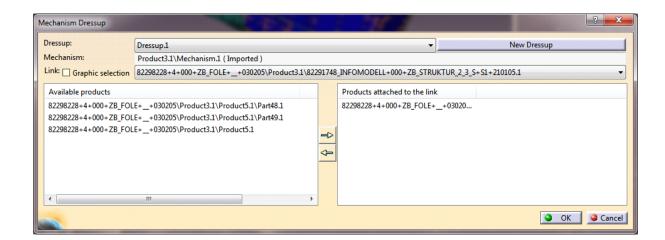
- The master and the imported/local dress-up mechanism usually do not share the same instance of GeometricCartesianSpace, since the BaseLink of each mechanism are usually defined in different coordinate spaces.
- For a given mechanism (master, local or imported), only one dress-up shall be defined. A mechanism may be imported in different assembly nodes (each of them having one and only one dress-up).
- In the special case of a 'local dress-up mechanism', the dress-up if defined locally on the master mechanism (special case of 4.8 where both 'master mechanism' and 'local dressup mechanism' reference to the same assembly node via AssociatedTo

## 4.8 Template "Kinematic Dressup"

A Dressup enables to associate fully constrained pairs of part occurrences involved in a mechanism with part or assembly occurrences not involved in a mechanism. For each dress-up association, two KinematicLinks and a LowKinematicPair of kind fully\_constrained\_pair is specified.

Normally the kinematic is defined within a master Mechanism (involving a minimum number of parts having simplified wired geometry) and used on the same assembly node ('local') or imported on another assembly node placed above in the product structure (see 4.5) => in this case, the dress-up links are defined within the local or imported dress-up mechanism. Doing so, the performance of kinematics is improved within the CAD systems.




But a dress-up may be defined within one mechanism, if the Kinematic pairs involving one part occurrence shall apply in the same way to several further parts or assemblies.







In the following CATIA window, an example is shown how for each kinematic Link of the master mechanism (chosen from the select box place above the two lists), one or multiple part/assembly occurrences of the assembly (on which the dress-up mechanism is attached) may be chosen (left list) and added to the right list. All these selected part occurrences are fully constrained with the above Kinematic Link:







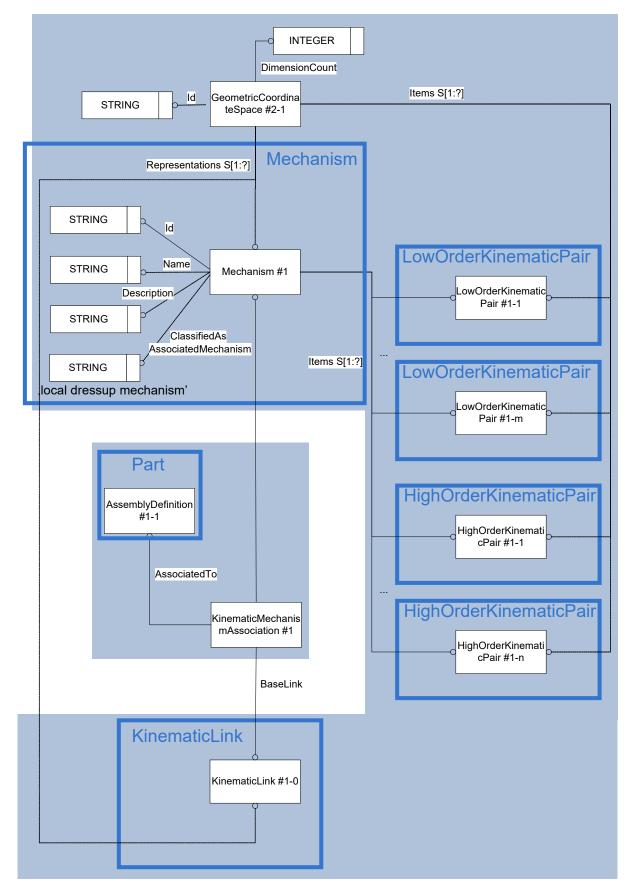



Figure 18: Template "KinematicDressup"





# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
<Representation xsi:type="n0:Mechanism" uid="kin--0000000006039F00--m">
  <Id id="kin--0000000006039F00--m"/>
  <RepresentationRelationship uid="kin--0000000006039F00--mrel"</pre>
xsi:type="n0:GeneralGeometricRepresentationRelationship">
    <Definitional>true/Definitional>
    <Related uidRef="kin--0000000006039F00--m2"/>
    <RelationType>import</RelationType>
  </RepresentationRelationship>
</Representation>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<Classification uid="cla--im">
    <ClassString>imported dressup mechanism</ClassString>
  </Class>
</Classification>
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
<Representation xsi:type="n0:Mechanism" uid="kin--0000000006039F00--m2">
  <ClassifiedAs>
    <Classification uidRef="cla--im"/>
  </ClassifiedAs>
  <ContextOfItems uidRef="ccs--origin"/>
  <Id id="Kurvengetriebe"/>
  <Items>
        <RepresentationItem uidRef="kin--0000000006039F00--m2--kpair1"/>
</Items>
  <Name>
    <CharacterString>Training Dressup</CharacterString>
  </Name>
</Representation>
  <Representations>
    <RepresentationItem xsi:type="n0:LowOrderKinematicPair" uid="kin--</pre>
0000000006039F00--m2--kpair1">
      <Name>
            <CharacterString>Plunger-Disc-Spring</CharacterString>
      </Name>
      <Link1 uidRef="kin--00000000129AA190--17--1"/>
      <Link2 uidRef="kin--00000000124E1D30--21--1"/>
```





```
<PairFrame1 uidRef="kin--00000000129AA190--17--1--klfp--dummy"/>
      <PairFrame2 uidRef="kin--00000000124E1D30--21--1--klfp--dummy"/>
      <Kind>fully constrained pair</Kind>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
<Representation xsi:type="n0:KinematicLink" uid="kin--00000000006039F00--klfp-</pre>
-m2">
  <Description>
    <CharacterString>Fixed Part for &gt;Training Dressup&lt;</Character-</pre>
String>
  </Description>
  <Id id="kin--0000000006039F00--klfp--id--m2"/>
  <Ttems>
        <RepresentationItem uidRef="kin--0000000006039F00--klfp--dummy--m2"/>
  </Items>
</Representation>
  <Representations>
  <Items>
    <RepresentationItem uid="kin--0000000006039F00--klfp--dummy--m2"</pre>
xsi:type="n0:AxisPlacement">
      <Axis>0.0000000000,0.000000000,1.000000000
      <Position>0.0000000000,0.000000000,0.000000000
      <RefDirection>1.0000000000,0.000000000,0.0000000000/RefDirection>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordinateS-</pre>
pace">
  <Id id="/NULL"/>
  <Representations>
<Representation xsi:type="n0:KinematicLink" uid="kin--00000000129AA190--17--</pre>
  <Id id="kin--00000000129AA190--17--1--id"/>
  <Ttems>
  </Items>
</Representation>
  <Representations>
  <Items>
    <RepresentationItem uid="kin--00000000129AA190--17--1--klfp--dummy"</pre>
xsi:type="n0:AxisPlacement">
      <Axis>0.0000000000,0.000000000,1.000000000
      <Position>0.0000000000,0.000000000,0.0000000000</Position>
      <RefDirection>1.0000000000,0.000000000,0.000000000</RefDirection>
    </RepresentationItem>
```





```
</Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
<RepresentationContext uid="ccs--origin" xsi:type="n0:GeometricCoordinateS-</pre>
pace">
  <Id id="/NULL"/>
  <Representations>
<Representation xsi:type="n0:KinematicLink" uid="kin--00000000124E1D30--21--</pre>
  <ContextOfItems uidRef="ccs--origin"/>
  <Id id="kin--00000000124E1D30--21--1--id"/>
  <Items>
  </Items>
</Representation>
  <Representations>
  <Items>
    <RepresentationItem uid="kin--00000000124E1D30--21--1--klfp--dummy"</pre>
xsi:type="n0:AxisPlacement">
      <Axis>0.0000000000,0.000000000,1.000000000
      <Position>0.0000000000,0.000000000,0.0000000000/Position>
      <RefDirection>1.0000000000,0.000000000,0.000000000</RefDirection>
    </RepresentationItem>
  </Items>
  <DimensionCount>3</DimensionCount>
</RepresentationContext>
```

#### **Preprocessor Recommendations:**

- Link1 references a new instance of KinematicLink that refers to the Occurrence of part that has a simplified wired geometry
- Link2 references a new instance of KinematicLink that refers to the Occurrence of the part with full geometry
- All the Occurrences referenced over Link1 shall be component parts of the assembly structure of Mechanism#1.AssociatedTo.
- All the Occurrences referenced over Link2 shall be component parts or assembly nodes of the assembly structure of Mechanism#2.AssociatedTo.
- Since only one dress-up may be defined for a given mechanism (local or imported) at a given assembly node, the name of the dress-up may be mapped to Mechanism.Description.
- Since all the kinematic pairs defined within a dress-up mechanism are fully constrained, the BaseLink can be chosen out of any of them.
- In the special case of a 'local dressup mechanism', the BaseLink of the dress-up shall be the same as the BaseLink of the local master mechanism





## 5 Kinematic Motion

Kinematic motions may be described in two ways:

- With a number of discrete snapshots, each one defining the position of the parts. Such a
  motion is computed out of a fully defined motion based on the kinematic geometric constraints. This way, the exact position of the parts in between may not be defined. This involves
  the following templates:
  - LinkMotionAlongPath
  - o KinematicPathDefinedByNodes
  - o PathSegment
  - LinkMotionRelationship
  - Simplified Kinematic Positioning Representation
  - o Full Kinematic Positioning Representation
- Fully defined based on the kinematic geometrical constraints. This is currently out of scope of this recommended practices document.

## 5.1 Template "LinkMotionAlongPath"

A LinkMotionAlongPath is a type of GeometricRepresentation for the definition of parameter or time coordinated movements of one or several links along paths in space.

Remark: a LinkMotionAlongPath corresponds to an Animation in CATIA and to a set of FrameSequences in PLMXML.





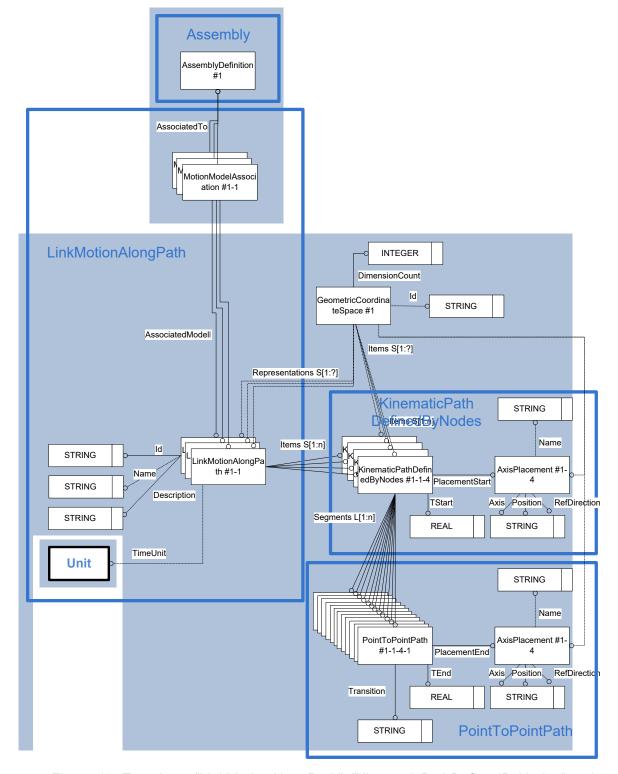



Figure 19: Templates "LinkMotionAlongPath", "KinematicPathDefinedByNodes" and "PointToPointPath"





| Entity LinkMotionAlongPath attributes             | Attribute type                                                    |  |
|---------------------------------------------------|-------------------------------------------------------------------|--|
| ClassifiedAs                                      | OPTIONAL SET[1:?] of Classification                               |  |
| Description                                       | OPTIONAL DescriptorSelect                                         |  |
| ld                                                | Id                                                                |  |
| Items                                             | SET[1:?] of KinematicPathDefinedByNodes                           |  |
| Name                                              | OPTIONAL DescriptorSelect                                         |  |
| RepresentationTypes                               | OPTIONAL SET[1:?] of ClassSelect                                  |  |
| RetentionPeriod                                   | OPTIONAL SET[1:?] RetentionPeriod                                 |  |
| VersionId                                         | OPTIONAL IdentifierSelect                                         |  |
| RepresentationRelationship                        | OPTIONAL SET[1:?] OF RepresentationRelationship                   |  |
| ActivityAssignment                                | OPTIONAL SET[1:?] of ActivityAssignment                           |  |
| ApprovalAssignment                                | OPTIONAL SET[1:?] of ApprovalAssignment                           |  |
| DateAndPersonAssignment                           | OPTIONAL SET[1:?] of DateAndPersonAssignment                      |  |
| DatetimeAssignment                                | OPTIONAL SET[1:?] of DateTimeAssignment                           |  |
| EffectivityAssignment                             | OPTIONAL SET[1:?] of EffectivityAssignment                        |  |
| EventAssignment                                   | OPTIONAL SET[1:?] of EventAssignment                              |  |
| InformationUsageRightAssignment                   | OPTIONAL SET[1:?] of InformationUsageRightAssignment              |  |
| ModelPropertyAssignment                           | OPTIONAL SET[1:?] of ModelPropertyAssignment                      |  |
| OrganizationOrPersonInOrganiza-<br>tionAssignment | OPTIONAL SET[1:?] of OrganizationOrPersonInOrganizationAssignment |  |
| PropertyDefinitionAssignment                      | OPTIONAL SET[1:?] of PropertyDefinitionAssignment                 |  |
| PropertyValueAssignment                           | OPTIONAL SET[1:?] of PropertyValueAssignment                      |  |
| SecurityClassificationAssignment                  | OPTIONAL SET[1:?] of SecurityClassificationAssignment             |  |
| SuppliedObjectRelationship                        | OPTIONAL SET[1:?] of SuppliedObjectRelationship                   |  |
| TimeIntervalAssignment                            | OPTIONAL SET[1:?] of TimeIntervalAssignment                       |  |
| TimeUnit                                          | OPTIONAL Unit                                                     |  |
| LinkMotionDecompositionRelationship               | OPTIONAL SET[1:?] OF LinkMotionDecomposition-Relationship         |  |
| LinkMotionRelationship                            | OPTIONAL SET[1:?] OF LinkMotionRelationship                       |  |

Table 12: "LinkMotionAlongPath" Attributes





### Attribute recommendations

- **Description**: the reason for the creation of the LinkMotionAlongPath. The value of this attribute need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **Id**: the identifier or set of identifiers for the LinkMotionAlongPath. Use "Identifier" template (see [242-PAS]).
- Items: the set of KinematicPathDefinedByNodes that that constitute the motion path.
- Name: the words or set of words by which the LinkMotionAlongPath is known. The value
  of this attribute need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- PropertyValueAssignment: to assign a PropertyValue to the Motion. Use the "PropertyAssignment" template (see [242-PAS] 6.2).
- **TimeUnit**: the unit for measures of time related to this motion definition. The value of this attribute need not be specified. Use "Unit" template (see [242-PAS]).
- **LinkMotionRelationship**: the associated GeometricModels involved by this Motion. See template "Full kinematic positioning representation" in 5.5
- Other attributes than these are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.

## **Preprocessor Recommendations:**

- The LinkMotionAlongPath(s) associated to an AssemblyDefinition shall be defined within the same GeometricCoordinateSystem than the AssemblyDefinition.
- The LinkMotionAlongPaths associated to the same AssemblyDefinition and sharing one of many KinematicPathDefinedByNodes shall have the same TimeUnit.
- If the AssemblyDefinition has a GeometricModel attached to it, this geometry is not part
  of the motion, except it is explicitly added to the motion via the full kinematic positioning
  (see next sections). Therefore, there is no obligation to define the AssemblyDefinition
  and the PlacementStart in the same GeometricCoordinateSystem.
- The AssemblyDefinition associated to the LinkMotionAlongPaths shall be a common toplevel node of all parts/geometries that are defined within the paths of the motion.
- Multiple LinkMotionAlongPaths can be defined on one AssemblyDefinition (typically alternative/variants to each other).
- The AxisPlacement of all the PointToPointPaths of a KinematicPathDefinedByNodes shall be in the same GeometricCoordinateSystem.
- TimeUnit may be left unset. In this case, no speed indication is given to the motion, but just the relative motion of the paths to each other => the unit chosen to run the motion shall be the same for all paths.

| Entity MotionModelAssociation attributes | Attribute type                                     |  |
|------------------------------------------|----------------------------------------------------|--|
| AssociatedModel                          | MotionModelSelect                                  |  |
| AssociationObjectRelationship            | OPTIONAL SET[1:?] of AssociationObjectRelationship |  |

Table 13: "MotionModelAssociation" Attributes





### Attribute recommendations

AssociatedModel: the LinkMotionAlongPath.

# 5.2 KinematicPathDefinedByNodes

A KinematicPathDefinedByNodes is a type of RepresentationItem that is a parameter or time coordinated path in space along which motion shall take place. The path is defined by a start position and orientation in space at a particular parameter or time and a list of segments to traverse through.

Remark: a KinematicPathDefinedByNodes corresponds to a Channel in CATIA and to a FrameSequence in PLMXML.

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

| Entity KinematicPathDefinedByNodes attrib-<br>utes | Attribute type                                    |  |
|----------------------------------------------------|---------------------------------------------------|--|
| External                                           | OPTIONAL ExternalItem                             |  |
| Name                                               | OPTIONAL DescriptorSelect                         |  |
| ModelPropertyAssignment                            | OPTIONAL SET[1:?] of ModelPropertyAssignment      |  |
| PropertyDefinitionAssignment                       | OPTIONAL SET[1:?] of PropertyDefinitionAssignment |  |
| PropertyValueAssignment                            | OPTIONAL SET[1:?] of PropertyValueAssignment      |  |
| PlacementStart                                     | AxisPlacement                                     |  |
| Segments                                           | LIST [1:?] OF PathSegment                         |  |
| TStart                                             | REAL                                              |  |

Table 14: "KinematicPathDefinedByNodes" Attributes

## Attribute recommendations

- **PropertyValueAssignment**: to assign a KinematicPathDefinedByNodes to the Motion. Use the "PropertyAssignment" template (see [242-PAS] 6.2).
- PlacementStart: the AxisPlacement that defines the reference coordinate system and, thus, the location and orientation of the start-point of the KinematicPathDefinedByNodes. Use "AxisPlacement" definition within the "GeometricModel" template (see [242-PAS]).
- **Segments:** the ordered list of PathSegment objects that the KinematicPathDefinedByNodes consists of. The travel along the KinematicPathDefinedByNodes starts at the first element in the list. Use "PointToPointPath" template (see 5.3).
- **TStart:** the parameter value that represents at which time the travel along the KinematicPathDefinedByNodes begins.
- Other attributes than these are not covered by these Recommended Practices; their use is discouraged as it would depend on mutual agreements between data exchange partners.





## **Preprocessor Recommendations:**

- Multiple KinematicPathDefinedByNodes can be defined on one LinkMotionAlongPaths (to see the orchestrated motion of several paths).
- All the KinematicPathDefinedByNodes associated to a LinkMotionAlongPath shall be in the same GeometricCoordinateSystem as the LinkMotionAlongPath
- The AxisPlacement (StartPlacement) is the absolute placement of the part within the AssemblyDefinition. It is computed out of its relative placement in the static assembly structure.
- TStart shall be zero or greater and shall be expressed in the (optional) TimeUnit.
- The motion is expected to start at the time 0 and to end at the highest TEnd of all Paths.
- Each Path may have a different TStart and their highest TEnd do not need to have the same value.
- IP1: As a subtype of RepresentationItem, KinematicPathDefinedByNodes shall be used directly or indirectly, in at least one LinkMotionAlongPath.

## 5.3 Template "PointToPointPath"

A PathSegment is a portion of a complete kinematic path and describes the movement of a link from a previous position and orientation to a new position and orientation in space. A PathSegment is either a CircularPath, a LinearPath or a PointToPointPath.

For the moment, only PointToPointPaths are in scope of this document.

Remark: a PointToPointPath corresponds to a Channel Step in CATIA and to a FrameStep in PLMXML.

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

| Entity PointToPointPath attributes | Attribute type                                    |  |
|------------------------------------|---------------------------------------------------|--|
| PlacementEnd                       | AxisPlacement                                     |  |
| TEnd                               | REAL                                              |  |
| Transition                         | TransitionCodeEnum                                |  |
| ModelPropertyAssignment            | OPTIONAL SET[1:?] of ModelPropertyAssignment      |  |
| PropertyDefinitionAssignment       | OPTIONAL SET[1:?] of PropertyDefinitionAssignment |  |
| PropertyValueAssignment            | OPTIONAL SET[1:?] of PropertyValueAssignment      |  |

Table 15: "PointToPointPath" Attributes

#### Attribute recommendations

- PlacementEnd: the AxisPlacement to which the parameters of the PathSegment refer.
   It is the location and orientation of the end-point of the PathSegment. Use "AxisPlacement" definition within the "GeometricModel" template (see [242-PAS]).
- TEnd: the parameter value that represents the time of the end location of the travel for this PathSegment
- **Transition:** the type of smoothness of the motion along the path. Where applicable, the following values shall be used:





| Enumeration value                 | Explanation                                             |
|-----------------------------------|---------------------------------------------------------|
| cont same gradient                | the motion occurs continuously with a constant gradient |
| cont same gradient same curvature | gradient and curvature of the motion are constant       |
| continuous                        | the motion is continuous                                |
| discontinuous                     | the position between the path segments is not defined   |

For the moment, the use of the value 'discontinuous' is recommended.

## **Preprocessor Recommendations:**

- The PlacementEnd shall be defined in the same GeometricCoordinateSystem than the PlacementStart of the KinematicPathDefinedByNodes => incremental positioning (in which each Segment has its own GeometricCoordinateSystem and the rotation/translation of a given segment builds on the GeometricCoordinateSystem of the predecessor segment) is not supported.
- The AxisPlacement (EndPlacement) is the absolute placement of the part within the AssemblyDefinition. It is computed out of its relative placement in the static assembly structure.
- In order to tell that a path shall be immobile during a given time interval, the KinematicPathDefinedByNodes.PlacementStart and the Segments[1].PlacementEnd, resp. the Segments[ix].PlacementEnd and Segments[ix+1].PlacementEnd shall be identical.
- The segments in the list shall have increasing TEnds: Segments[1].Tend > TStart resp. Segments[ix+1].Tend > Segments[ix].Tend => endless loops are not supported (can be activated within the viewer that runs the motion).
- If the source system supports Segments having different duration, they shall be converted to segments all having the same duration.

### Postprocessor Recommendations:

If the target system requires that each Segment has its own GeometricCoordinateSystem
and is positioned in the GeometricCoordinateSystem of its predecessor Segment (socalled 'incremental' positioning), the PlacementEnds have to be transformed into the appropriate GeometricCoordinateSystems.





# 5.4 Simplified Kinematic Positioning Representation

This enables to relate the Kinematic path to the part (or to a SpecificOccurrence of this part) in the case no GeometricModel is involved.

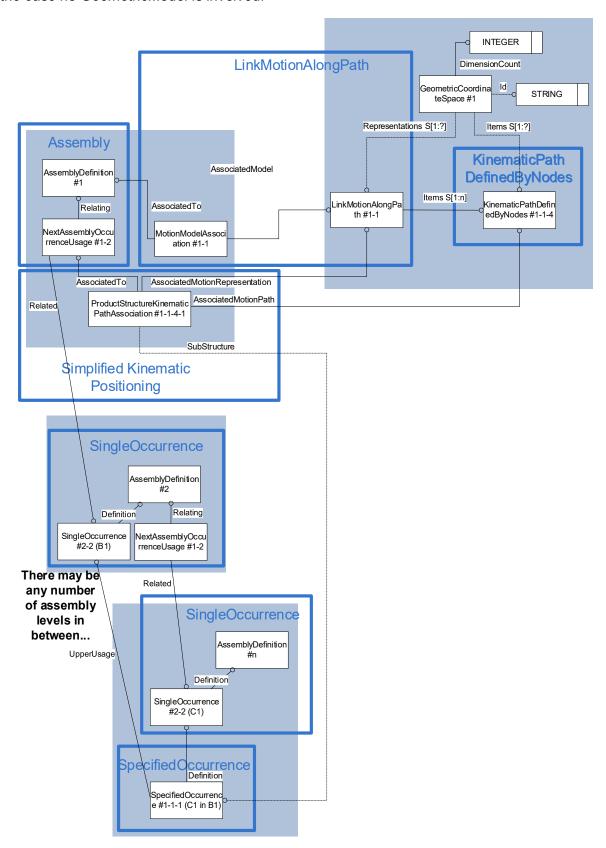



Figure 20: Template "ProductStructureKinematicPathAssociation"





| Entity ProductStructureKinematicPathAsso-<br>ciation attributes | Attribute type                                     |  |
|-----------------------------------------------------------------|----------------------------------------------------|--|
| AssociatedMotionRepresentation                                  | LinkMotionAlongPath                                |  |
| AssociatedMotionPath                                            | KinematicPathdefinedByNode                         |  |
| SubStructure                                                    | OPTIONAL SpecifiedOccurrence                       |  |
| AssociationObjectRelationship                                   | OPTIONAL SET[1:?] of AssociationObjectRelationship |  |
| ModelPropertyAssignment                                         | OPTIONAL SET[1:?] of ModelPropertyAssignment       |  |
| PropertyDefinitionAssignment                                    | OPTIONAL SET[1:?] of PropertyDefinitionAssignment  |  |
| PropertyValueAssignment                                         | OPTIONAL SET[1:?] of PropertyValueAssignment       |  |

Table 16: "ProductStructureKinematicPathAssociation" Attributes

#### Attribute recommendations

- AssociatedMotionRepresentation: the LinkMotionAlongPath that specifies a motion path. Use "LinkMotionAlongPath" template (see 5.1).
- **AssociatedMotionPath:** the KinematicPathDefinedByNodes object that is being transformed. Use "KinematicPathDefinedByNodes" template (see 5.2).
- SubStructure: the SpecifiedOccurrence to which the kinematic path applies. The value
  of this attribute need not be specified. Use "SpecifiedOcurrence" template (see [242PAS]).

#### **Preprocessor Recommendation**:

- If SubStructure is unset, the kinematic path applies to the SingleOccurrence attached as 'Related' to the NextAssemblyOccurrenceUsage) in which the current ProductStructure-KinematicPathAssociation is embedded.
  - If set, the kinematic path applies to one particular SpecifiedOccurrence of one of its components.
  - Remark: SpecifiedOccurrences are mostly not supported by the PDM systems => currently out of scope
- ProductStructureKinematicPathAssociation.AssociatedMotionRepresentation<-AssociatedModel{MotionModelAssociation}->AssociatedTo and ProductStructureKinematicPathAssociation.AssociatedTo shall reference the same AssemblyDefinition.





# 5.5 Full Kinematic Positioning Representation

This enables relating the Kinematic path to the part (or to a SpecificOccurrence of this part) in the case a GeometricModel is involved.

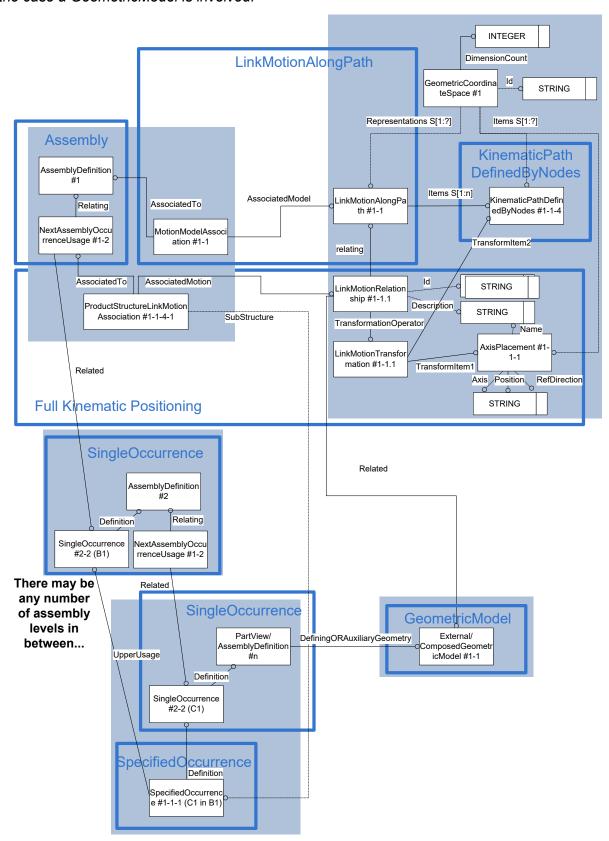



Figure 21: Template "ProductStructureLinkMotionAssociation"





| Entity ProductStructureLinkMotionAssocia-<br>tion attributes | Attribute type                                     |  |
|--------------------------------------------------------------|----------------------------------------------------|--|
| AssociatedMotion                                             | LinkMotionRelationship                             |  |
| SubStructure                                                 | OPTIONAL SpecifiedOccurrence                       |  |
| AssociationObjectRelationship                                | OPTIONAL SET[1:?] of AssociationObjectRelationship |  |
| ModelPropertyAssignment                                      | OPTIONAL SET[1:?] of ModelPropertyAssignment       |  |
| PropertyDefinitionAssignment                                 | OPTIONAL SET[1:?] of PropertyDefinitionAssignment  |  |
| PropertyValueAssignment                                      | OPTIONAL SET[1:?] of PropertyValueAssignment       |  |

Table 17: "ProductStructureLinkMotionAssociation" Attributes

### Attribute recommendations

- **AssociatedMotion**: the LinkMotionRelationship that specifies the GeometricModel and the motion path.
- **SubStructure:** the SpecifiedOccurrence to which the kinematic path applies. The value of this attribute need not be specified. Use "SpecifiedOcurrence" template (see [242-PAS]).

| Entity LinkMotionRelationship attributes | Attribute type                                      |  |
|------------------------------------------|-----------------------------------------------------|--|
| ClassifiedAs                             | OPTIONAL SET[1:?] of Classification                 |  |
| Description                              | OPTIONAL DescriptorSelect                           |  |
| Id                                       | OPTIONAL Id                                         |  |
| Related                                  | ComposedOrExternalGeometricModelSe-<br>lect         |  |
| RelationType                             | OPTIONAL ClassSelect                                |  |
| TransformationOperator                   | LinkMotionTransformation                            |  |
| EffectivityAssignment                    | OPTIONAL SET[1:?] of EffectivityAssignment          |  |
| RelationshipObjectRelationship           | OPTIONAL SET[1:?] of RelationshipObjectRelationship |  |

Table 18: "LinkMotionRelationship" Attributes

## Attribute recommendations

- Description: the text or the set of texts that provide further information about the Link-MotionRelationship: need not be specified. Use "Description" template (see [242-PAS] 4.6.7).
- **Id**: the identifier or set of identifiers for the LinkMotionRelationship: need not be specified. Use "Identifier" template (see [242-PAS] 4.6.6).





- Related: the GeometricModel.
- RelationType: the meaning of the relationship. Use ClassString type if one of the values below is used, otherwise use "Class" template (see [242-PAS] 4.6.4): need not be specified.
- **TransformationOperator:**: the LinkMotionTransformation that specifies the parameter or time dependent transformation of the link geometry within the LinkMotionAlongPath.
- Other attributes than these are not covered by these Recommended Practices; their use
  is discouraged as it would depend on mutual agreements between data exchange partners.

| Entity LinkMotionTransformation attributes | Attribute type              |  |
|--------------------------------------------|-----------------------------|--|
| TransformItem1                             | AxisPlacement               |  |
| TransformItem2                             | KinematicPathDefinedByNodes |  |

Table 19: "LinkMotionTransformation" Attributes

#### Attribute recommendations

- TransformItem1: the AxisPlacement that is the operator of the transformation.
- **TransformItem2**: the KinematicPathDefinedByNodes object that is being transformed.

#### **Preprocessor Recommendation**:

- ProductStructureLinkMotionAssociation.AssociatedMotion and ProductStructureLinkMotionAssociation.AssociatedTo shall reference to the same AssemblyDefinition.
- The AxisPlacement for TransformItem1 shall be in the same GeometricCoordinateSystem than the KinematicPathDefinedByNodes referenced by TransformItem2
- The AxisPlacement for TransformItem1 shall have neither a rotation nor a translation component.
- If SubStructure is unset, the kinematic path applies to the SingleOccurrence attached as 'Related' to the AssemblyOccurrenceRelationship (NextAssemblyOccurrenceUsage) in which the current ProductStructureLinkMotionAssociation is embedded. If set, the kinematic path applies to one particular SpecifiedOccurrence of one of its components.
  - Remark: SpecifiedOccurrences are mostly not supported by the PDM systems => currently out of scope
- The GeometricModel for LinkMotionRelationship.Related can be either an ExternalGeometricModel (of a piece part) or a ComposedGeometricModel (of an assembly). It has to be one of the GeometricModels associated via DefiningGeometry or via AuxiliaryGeometry to the PartView/AssemblyDefinition where the SingleOccurrence/SpecifiedOccurrence belongs to.

Therefore, the GeometricCoordinateSystem of the GeometricModel maybe different from the GeometricCoordinateSystem of the LinkMotionAlongPath, but this has no effect since the positioning of the GeometricModel is done via the PlacementStart.





# 6 Kinematic Statistics and Validation Properties

As the development and testing of Kinematic capabilities is just starting, no established statistics for testing or validation properties are available yet. It is a task for the test rounds in the involved implementor forums to define and improve these.

This section is intended to gather initial ideas for such statistics and properties, and to facilitate the discussion of these across the two groups.

The exporting system will calculate the respective values based on the native model and write them as IntegerValues into the STEP file.

If for example some KinematicPairs are created artificially during the STEP mapping (like additional BaseLinks mapped as fully constrained pairs), they have to be counted also.

If some capabilities are missing in the STEP tool to export all data contained in the native model, they shall not be counted in the validation properties.

In all cases, the verification of the validation properties shall be possible without having the native model.

As defined within the CAx-IF; the receiving system upon import will re-create the information from the file, and derive the same attributes based on (mapping) the results. These will be compared to the data given in the file, and if the values match, the import will be deemed successful.

Note: like in [242-PAS] 6.2, It is recommended that all the properties attached to an object are spread over two instances of PropertyValueAssignment. One instance shall collect the properties that describe the object (having PropertyValueAssignment.ClassifiedAs='<object> properties'); the other instance shall collect the properties that describe the validation properties of the same object (having PropertyDefinition.PropertyType='kinematics validation property' and PropertyValueAssignment.ClassifiedAs='validation properties').

The validation properties shall be mapped similarly to the assembly validation properties defined in section 13.1 in [242-PAS].

The PropertyDefinition.PropertyType shall be 'kinematics validation property' and the PropertyDefinition.Id shall be 'quality property'.

If an object has several validation properties (for example number of children and some kinematics validation property), both PropertyValues shall be associated to the same PropertyValueAssignment (with Class 'validation properties').

## Preprocessor Recommendations:

The use of NumericalValue for the Integer (i.e. not a real with comma or scientific notation) is deprecated and shall not be used anymore.

## Postprocessor Recommendations:

For upward compatibility reasons, the use of NumericalValue shall be supported, especially for files former to Edition 4.

## 6.1.1 Statistics and Validation Properties for Kinematic Motion

### 6.1.1.1 Number of Kinematic Motions

For each assembly part having Motions, calculate the number of Kinematic Motions by counting the MotionModelAssociations in the STEP file. These define alternative/variant motions.

For use as a validation property, store the result in a property of kind IntegerValue called 'number of kinematic motions', similar to 'number of children', attached to the AssemblyDefinition.

As all properties that are counts, this is intended as a completeness check.





A value 0 shall be omitted and no validation property mapped.

### 6.1.1.2 Number of Kinematic Paths per Motion

For each LinkMotionAlongPath, calculate the number of Kinematic Paths by counting the instances of KinematicPathDefinedByNodes orchestrated within the same Motion.

For use as a validation property, store the result in a property of kind IntegerValue called 'number of kinematic paths', attached to the LinkMotionAlongPath. A value 0 shall not be omitted and shall be mapped as validation property.

## 6.1.1.3 Number of Steps per Kinematic Path

For each KinematicPathByNodes, calculate the number of steps by counting the instances of PointToPointPath.

For use as a validation property, store the result in a property of kind IntegerValue called 'number of kinematic steps', attached to the KinematicPathDefinedByNodes.

A value 0 shall not be omitted and shall be mapped as validation property.

## 6.1.1.4 Volume of the related geometric model

Total volume of the moving parts within the assembly node linked to the ProductStructureKine-maticPathAssociation or ProductStructureLinkMotionAssociation. This is intended to ensure that the right parts of the assembly are moving, similar to the "affected geometry" validation property for PMI.

Store the result in a property of kind NumericalValue (as volume measure) called 'total volume of the moving parts', attached to the ProductStructureKinematicPathAssociation or ProductStructureLinkMotionAssociation.

## 6.1.1.5 Centroid and Length of the Notional Kinematic Path Polyline

The "notional kinematic path polyline" is a virtual polyline, built from the KinematicPathDe-finedByNodes as follows: for each axis system of the path, compute the point (10, 10, 10) and join all these points according to the path order. This definition is inspired by the definition of the notional centroid for assembly validation properties. It seems simple to compute and representative for the motion.

For use as validation properties,

- store the result in a property of kind NumericalValue (as length measure) called 'length of notional kinematic path polyline', attached to the LinkMotionAlongPath
- store the result in a property (as cartesian point) called 'centroid of notional kinematic path polyline', attached to the LinkMotionAlongPath

Additionally, the Centroid of the part/assembly moved by the motion could be computed for each PathSegment. For use as a validation property, store the result in a property (as cartesian point) called 'centroid of motioned part/assembly', attached to the PathSegment.

# 6.1.2 Statistics and Validation Properties for Kinematic Mechanisms

#### 6.1.2.1 Number of Kinematic Mechanisms

For each assembly part having Mechanisms, calculate the number of Mechanisms by counting the instances of KinematicMechanismAssociations. These define alternative/variant mechanisms and may all apply together.

For use as a validation property, store the result in a property of kind IntegerValue called 'number of kinematic mechanisms', attached to the AssemblyDefinition

A value 0 shall be omitted and no validation property mapped.





```
<Part uid="ID_62">
  <Versions>
    <PartVersion uid="ID 64">
      <Views>
        <PartView uid="ID 65" xsi:type="bom:AssemblyDefinition">
          <InitialContext uidRef="ID 60"/>
          <ShapeDependentProperty uid="ID 106" xsi:type="bom:CentreOfMass">
            <DefinedIn uidRef="ID 108"/>
            <Id id="notional solids centroid"/>
            <Role>
              <ClassString>assembly validation property</ClassString>
            </Role>
            <CentrePoint uidRef="ID 107"/>
          </ShapeDependentProperty>
          <PropertyValueAssignment uid="ID 66">
            <AssignedPropertyValues>
              <PropertyValue uid="ID_59-1" xsi:type="bom:IntegerValue">
                <Definition>
                  <PropertyDefinition uidRef="ID 57-1"/>
                </Definition>
                <Name>
                  <CharacterString>number of kinematic mechanisms/Character-
String>
                </Name>
                <Unit uidRef="ID x17d1fa886a0"/>
                <ValueComponent>6</ValueComponent>
              </PropertyValue>
            </AssignedPropertyValues>
            <ClassifiedAs>
              <Classification uidRef="ID 58"/>
            </ClassifiedAs>
          </PropertyValueAssignment>
          <ViewOccurrenceRelationship uid="ID 73"</pre>
                                                      xsi:type="bom:NextAssem-
blyOccurrenceUsage">
```





```
</PartView>
      </Views>
    </PartVersion>
  </Versions>
</Part>
<PropertyDefinition uid="ID 57">
 <Id id="quality property"/>
  <PropertyType>
    <ClassString>assembly validation property</ClassString>
  </PropertyType>
</PropertyDefinition>
<Unit uid="ID x17d1fa886a0">
  <Kind>
    <ClassString>unspecified</ClassString>
  </Kind>
  <Name>
    <ClassString>each</ClassString>
  </Name>
  <Quantity>
    <ClassString>number of elements/ClassString>
  </Quantity>
</Unit>
<Classification uid="ID 58">
  <Class>
    <ClassString>validation properties</ClassString>
  </Class>
  <Role>kind of properties</Role>
</Classification>
<PropertyDefinition uid="ID 57-1">
  <Id id="quality property"/>
  <PropertyType>
    <ClassString>kinematics validation property</ClassString>
  </PropertyType>
</PropertyDefinition>
```





## 6.1.2.2 Number of Kinematic Pairs per Mechanism

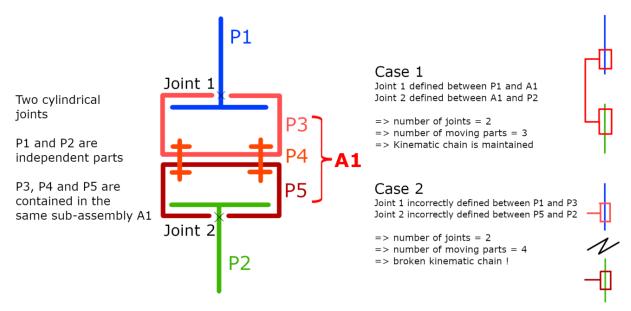
For each Mechanism, calculate the number of Low/High Order Kinematic Pairs by counting the instances of LowOrderKinematicPair, LowOrderKinematicPairWithMotionCoupling, KinematicPairWithMotionCoupling and HighOrderKinematicPair combined within the same mechanism.

For use as a validation property, store the result in two properties of kind IntegerValue called:

- 'number of low order kinematic pairs' counting all instances of LowOrderKinematicPair, LowOrderKinematicPairWithMotionCoupling and KinematicPairWithMotionCoupling
- and 'number of high order kinematic pairs' counting all instances of HighOrderKinematicPair

attached to the Mechanism.

A value 0 shall not be omitted and shall be mapped as validation property.


## 6.1.2.3 Number of Moving KinematicLinks per Mechanism

For each Mechanism, calculate the number of moving parts by counting the instances of KinematicLink involved via KinematicPairs within the same mechanism (except the one used as KinematicMechanismAssociation.BaseLink, see 4.4).

If each KinematicLink is associated to one (Single/Specified)Occurrence, since one Occurrence shall be associated at most to one KinematicLink per Mechanism (see 4.2), these define also the number of moving parts/assemblies. But in case KinematicLinks are associate to multiple (Single/Specified)Occurrence (see complex case of rigid groups in section 4.5), even more parts/assemblies will be moving.

For use as a validation property, store the result in a property of kind IntegerValue called 'number of moving KinematicLinks', attached to the Mechanism.

Here an example of a wrong import (the kinematic pairs are created on the single parts P3/P5 instead of on an assembly A1) where this validation property helps detect the problem:



A value 0 shall not be omitted and no validation property mapped.

### 6.1.2.4 Number of Actuations per Mechanism

For each Mechanism, calculate the number of actuations over all KinematicPairs, by counting those attributes (Rx/y/z and Tx/y/z) in KinematicPair.Actuation that have a non-zero value (see 4.3). This captures the pairs where an initial movement can occur.





For use as a validation property, store the result in a property of kind IntegerValue called 'number of actuations', attached to the Mechanism.

A value 0 shall not be omitted and shall be mapped as validation property.

## 6.1.2.5 Number of KinematicPairs for each kind of KinematicPair per Mechanism

For each Mechanism, calculate the number of KinematicPairs for each kind of KinematicPair according to the recommended values for LowOrderKinematicPair.Kind, HighOrderKinematicPair.Kind and LowOrderKinematicPairWithMotionCoupling.Kind.

The name of the validation property of kind IntegerValue shall be overtaken from the attribute Kind (revolute\_pair, spherical\_pair, ...), for example 'number of revolute\_pairs', 'number of spherical\_pairs', ...).

A value 0 shall be omitted and shall not be mapped as validation property.

# The Instance Model: STEP exchange file format (ISO10303 AP242 Domain Model XML syntax)

```
<RepresentationContext uid="ccs--origin" xsi:type="bom:GeometricCoordi-</pre>
nateSpace">
  <Id id="/NULL"/>
  <Representations>
    <Representation xsi:type="bom:Mechanism" uid="kin--00000198446F1EF0--m">
      <Id id="/NULL"/>
      <Items>
•••
      </Items>
      <Name>
      </Name>
      <PropertyValueAssignment uid="ID 66-2">
        <AssignedPropertyValues>
          <PropertyValue uid="ID 59-2" xsi:type="bom:IntegerValue">
            <Definition>
              <PropertyDefinition uidRef="ID 57-1"/>
            </Definition>
            <Name>
              <CharacterString>number of low order kinematic pairs/Charac-
terString>
            <Unit uidRef="ID x17d1fa886a0"/>
            <ValueComponent>16</ValueComponent>
          </PropertyValue>
          <PropertyValue uid="ID 59-3" xsi:type="bom:IntegerValue">
              <PropertyDefinition uidRef="ID 57-1"/>
            </Definition>
            <Name>
              <CharacterString>number of high order kinematic pairs/Charac-
terString>
            </Name>
            <Unit uidRef="ID x17d1fa886a0"/>
```





```
<ValueComponent>0</ValueComponent>
          </PropertyValue>
          <PropertyValue uid="ID 59-4" xsi:type="bom:IntegerValue">
            <Definition>
              <PropertyDefinition uidRef="ID 57-1"/>
            </Definition>
            <Name>
              <CharacterString>number of moving parts/CharacterString>
            </Name>
            <Unit uidRef="ID x17d1fa886a0"/>
            <ValueComponent>12</ValueComponent>
          </PropertyValue>
          <PropertyValue uid="ID 59-5" xsi:type="bom:IntegerValue">
            <Definition>
              <PropertyDefinition uidRef="ID 57-1"/>
            </Definition>
              <CharacterString>number of actuations</CharacterString>
            </Name>
            <Unit uidRef="ID x17d1fa886a0"/>
            <ValueComponent>2</ValueComponent>
          </PropertyValue>
          <PropertyValue uid="ID 59-6" xsi:type="bom:IntegerValue">
            <Definition>
              <PropertyDefinition uidRef="ID 57-1"/>
            </Definition>
            <Name>
              <CharacterString>number of revolute pairs/CharacterString>
            <Unit uidRef="ID x17d1fa886a0"/>
            <ValueComponent>2</ValueComponent>
          </PropertyValue>
        </AssignedPropertyValues>
        <ClassifiedAs>
          <Classification uidRef="ID 58"/>
        </ClassifiedAs>
      </PropertyValueAssignment>
    </Representation>
 </Representations>
  <Items>
  </Items>
  <DimensionCount>3
</RepresentationContext>
```





# Annex A Known Issues

This section lists known issues with the AP242 Domain Model, both related to the assembly structure and to other domains within the Domain Model. These issues concern errors in the XSD, mismatches between the EXPRESS and XML schemas, deficiencies in the documentation and other issues that have already been communicated to the AP242 maintenance / development team for resolution. Many of these have been resolved by the Technical Corrigendum 1 (TC1) of AP242, which was published in 2016, by the Ed.2 (2019), by the Ed.3 (2022) and by the Ed.4 (2025). The table below lists only Kinematic-relevant issues which are yet unresolved. For issues against the AP242 Domain Model in general, please refer to [242-PAS, Annex B].

Since 2022, the Bugzilla list hosted by PDES Inc. has been transferred to ISO JIRA with new issue numbers. The old Bugzilla issue numbers are still mentioned in the short description.

| ISO Jira Issue  | Summary                                                          | Target<br>Milestone | Status |
|-----------------|------------------------------------------------------------------|---------------------|--------|
| TCSC410303-2432 | Hierarchy of Kinematics Mechanisms                               | 10303:4442<br>(Ed6) | New    |
| TCSC410303-2588 | Allow multiple directions within ActuatedDirection               | 10303:4442<br>(Ed6) | New    |
| TCSC410303-2589 | Allow multiple BaseLinks to a kinematics Mechanisms              | 10303:4442<br>(Ed6) | New    |
| TCSC410303-2634 | Rename LowerLimitRackDisplacement and UpperLimitRackDisplacement | 10303:4442<br>(Ed6) | New    |

# Annex B Reference Documents

This recommended practices document is based on and derived from various other documents, schemas, and technical presentations. Those resources are listed below:

- [242-PAS]: Recommended Practices for AP242 Ed.4 Domain Model XML Product & Assembly Structure
- AP242 Ed.4 Domain Model XML / EXPRESS Schema