

CAx-IF Recommended Practices for **Composite Materials**

Version 4.3

2 October 2025

Contacts:

CAx-IF

Jochen Boy

PROSTEP AG

jochen.boy@prostep.com

Technical

Keith Hunten

Lockheed Martin Aeronautics (retired)

KAHunten@gmail.com

John Van Horn

john.v.vanhorn@boeing.com

Preface

This document is to be a supplement to the existing AP 242 ed4 Recommended Practices document and is an update to Revision 3.6 Composite Material Recommended Practices document to reflect changes to ply orientation specification.

Please direct technical questions relating to this document to:

Keith A. Hunten

Tel: +1 (817) 637-5166

Email: KAHunten@gmail.com

Document History

Revision	Section / Figure	Change
3.4	Section 3.1.2.1	Update ply orientation specification
3.4	Figures 4, 5, 7, 8, 10, 11, 14, 15, 16, 17, 21, 22	Update figures to reflect new ply orientation specification instantiations
4.0	Section 3.1.2.3	Add descriptions of nominal vs manufacturing edge of ply
4.0	Section 3.1.2.2	Add description of multiple Rosettes
4.0	Annex A	Add Notes to define abbreviations in instantiation diagrams
4.0	Front matter	Restrict scope of this document to AP242 ed2
4.0	Figure 20	Corrected diagram to properly represent reinforcement orientation basis
4.0	Figure 8	Replaced figure with correct figure
4.1	Section 3.1.1	Added description of "associated shape"
4.1	Figure 4	Added entities used to represent "associated shape"
4.1	Sections 3.1.1.1 through 3.1.1.5	Added a NOTE referring to Section 3.1.1 for a description of "associated shape"
4.1	Section 3.1.1.5	Changed references to percentage_ply_definition to percentage_ply
4.1	Figure 11	Changed references to percentage_ply_definition to percentage_ply
4.1	Section 3.1.2.2	Added a clarification that there should be one {property_definition.name = 'basis'} for each rosette
4.2	Section 3.1.2.2	Changed the description of curve_11 angle offset to match the 3ds approach agreed to by the LOTAR Composites working group
4.3	Section 3.1.2.2	Added a reverse flag to change the primary fiber direction relative to the guide curve
4.3	Section 3.1.2.1	Added guidance for courses and sectors
4.3	Section 4	Added section for 4 Limited Length or Area Indicator Assignments (LLAI)
4.3	Section 3.1.2.1	Added guidance for the use of both MEOP and EEOP ply shapes
4.3	Section 3.1, 3.1.1.5, 3.1.1.7	Minor editorial changes
4.3	Annex B	Updated the MIM long form schema reference to be for 10303-242 ed4

Contents

Table of Contents

1 Introduction		1
2 Document Ide	entification	1
3 Using AP242	ed4 to represent Composite Material Shape and Structure	2
3.1 Composit	e Part and Constituent Representations	2
3.1.1 Comp	posite Part Structural Representation	6
3.1.1.1	Ply Laminate Table	8
3.1.1.2	Composite Assembly Table	11
3.1.1.3	Thickness Laminate Table	12
3.1.1.4	Percentage Laminate Table	14
3.1.1.5	Percentage Ply	15
3.1.1.6	Smeared Material	16
3.1.1.7	Use of Point_zone_shape to represent "Core Samples"	16
3.1.2 Comp	posite Constituent and Shape Representations	17
3.1.2.1	Ply	18
3.1.2.2	Ply Orientation	20
3.1.2.3	Ply Shape	25
3.1.2.4	Processed Core	30
3.1.2.5	Core Orientation	31
3.1.2.6	Core Shape	32
3.1.2.7	Filament Laminate	32
3.1.2.8	Ply Laminate	33
3.1.2.9	Composite Assembly	34
3.1.3 Mate	rials and Properties	35
3.1.3.1	Material Specifications	35
3.1.3.2	Material Callout	36
4 Limited Lengt	th or Area Indicator Assignments (LLAI) for laminate tables	37
4.1 Point Bas	ed LLAI	37
4.2 Line Base	ed LLAI	38
4.3 Area Bas	ed LLAI (Excluding Butt and Overlap Splice Areas)	39
4.4 Area Bas	ed LLAI (Butt Splice Area)	40
4.5 Area Bas	ed LLAI (Overlap Splice Area)	41
4.6 User Defi	ned	43
5 Geometric Fo	ounding of Composite Constituent Product Definitions	44
5.1 Reference	ed Shape in an Assembly with Additional Laminate Table Representation	44

subtype – the Most General Case	
Annex A Abbreviations used in Instantiation Diagrams	
Annex B Availability of Implementation Schemas	
B.1 AP242 Edition 2	
B.2 AP242 Edition 3	48
B.3 AP242 Edition 4	48
Figures	
Figure 1: Composite Laminate Table ARM Subtypes	3
Figure 2: Composite Laminate Table MIM Subtypes	4
Figure 3: ARM Composite Constituents	5
Figure 4: Laminate Table	7
Figure 5: Ply Laminate Table	9
Figure 6: Part Laminate Table Sequence Definitions	10
Figure 7: Composite Assembly Table	11
Figure 8: Thickness Laminate Table	12
Figure 9: Multiple Zones Sharing Plies	13
Figure 10: Percentage Laminate Table	14
Figure 11: Percentage Ply	15
Figure 12: Smeared Material	16
Figure 13: Composite Constituents	17
Figure 14: Ply	18
Figure 15: Courses and Sectors	19
Figure 16: Example: Multiple Rosettes for a Laminate Table	20
Figure 17: Ply Orientation Angle by Cartesian Placement, Curve, Cylindrical,	22
Figure 18: Ply Orietation by Curve - Offset and Reverse Specification	23
Figure 19: Ply Orientation by Point Array	24
Figure 20: Ply Orientation by User Defined Specification	25
Figure 21: Types of Ply Shapes	26
Figure 22: Ply Shape	27
Figure 23: Flat Pattern Ply Shape	28
Figure 24: Projected Ply Shape (Surface Ply Shape or View Ply Shape)	29
Figure 25: Processed Core – Beveled Sheet Representation Case	30
Figure 26: Processed Core – Solid Shape Representation Case	31
Figure 27: Filament Laminate	32

Figure 28: Ply Laminate	33
Figure 29: Composite Assembly	34
Figure 30: Stock Material	35
Figure 31: Limited Length or Area Assignments	37
Figure 32: Point Based LLAI	38
Figure 33: Line Based LLAI	39
Figure 34: Area Based LLAI (Excluding Butt and Overlap Splice Areas)	40
Figure 35: Area Based LLAI (Butt Splice Area)	41
Figure 36: Area Based LLAI (Overlap Splice Area)	43
Figure 37: User Defined LLAI	44
Figure 38: Referenced Shape in an Assembly with Additional Laminate Table Represent General Geometric Founding Case	
Figure 39: Founding of Ply and Composite Constituent Shapes - Most General Case	46
Tables	
Table 1: Changes in SUBTYPEs from AP209 ed1 to Current STEP Composites	2
Table 2: Laminate Table Mappings	7
Table 3: Ply Subtypes and Composite Constituents	46

1 Introduction

This Recommended Practices document has been prepared as a usage guide for industry. This document assumes that the reader has at least a rudimentary knowledge of both 10303 STEP and its associated AP242 ed4 (10303-242 ed4) application domains. The figures in this document are intended to provide a navigational view of portions of the AP with boxes representing entities, lines being relationships, and arrow heads indicating the pointer direction. This document is to be a supplement to the existing AP 203ed2 Recommended Practices document and is an excerpt and superset from the existing AP 209ed2 Recommended Practices document.

This document will provide pre- and post-processor recommendations where attributes from the conceptual STEP data models may not actually have values in the AP242 ed4 application domains. The terms pre-processor and post-processor refer to the applications that write and read the application data respectively. In these recommendations, the term 'no standard mapping' means there is no mapping defined in the AP's ARM-to-AIM mapping table for the data.

2 Document Identification

For validation purposes, STEP processors shall state which Recommended Practice document and version have been used in the creation of the STEP file. This will not only indicate what information a consumer can expect to find in the file, but even more important where to find it in the file.

This shall be done by adding a pre-defined ID string to the description attribute of the file_description entity in the STEP file header, which is a list of strings. The ID string consists of four values delimitated by a triple dash ('---'). The values are:

Document Type---Document Name---Document Version---Publication Date

The string corresponding to this version of this document is:

```
CAx-IF Rec.Pracs.---Composite Materials---4.3---2025-10-02
```

It will appear in a STEP file as follows:

```
FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.---Composite Materials---4.3---2025-10-02',),'2;1');
```


3 Using AP242 ed4 to represent Composite Material Shape and Structure

This section describes how AP242 ed4 is intended to be used to represent structures made of composite materials. This section will establish examples and limits on some of the data constructs that are not constrained in the Application Interpreted Model (AIM) of the Application Protocols (AP).

3.1 Composite Part and Constituent Representations

A composite part is made of constituents that are laminated in layers to create the part. AP 242 ed4 provides specialized product definitions to represent the structural makeup and properties of composite parts in SUBTYPEs of Laminate_tables. The ARM EXPRESS-G for Laminate_table is shown in Figure 1, and the MIM EXPRESS-G in Figure 2.

NOTE: The names of the SUBTYPEs in the MIM of the original AP209 ed1 were different. These names were changed in the interests of clarity for implementers. Table 1 summarizes these changes.

New SUBTYPE Name	Old SUBTYPE Name
ply_laminate_table	ply_laminate_definition
composite_assembly_table	composite_assembly_definition
thickness_laminate_table	thickness_laminate_definition
percentage_laminate_table	percentage_laminte_definition
UNCHANGED	smeared_laminate_definition

Table 1: Changes in SUBTYPEs from AP209 ed1 to Current STEP Composites

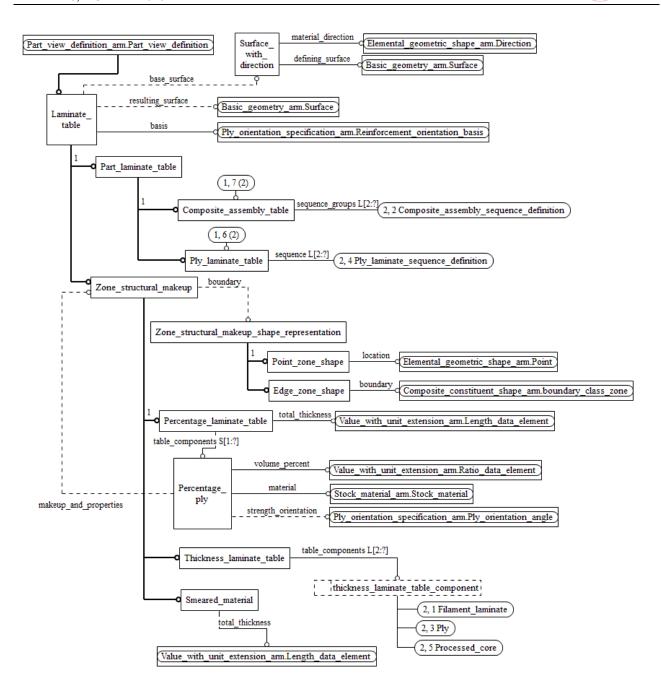


Figure 1: Composite Laminate Table ARM Subtypes

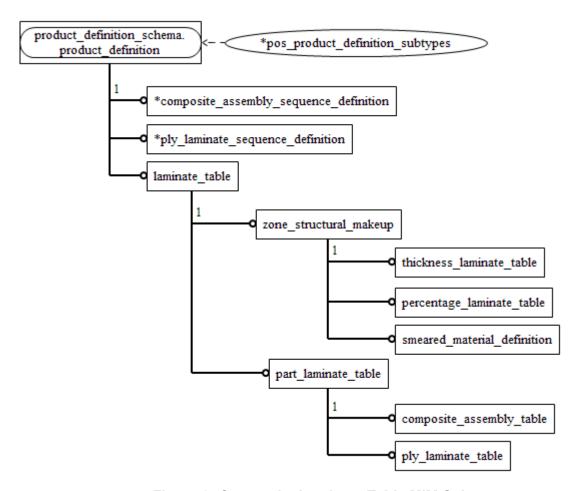
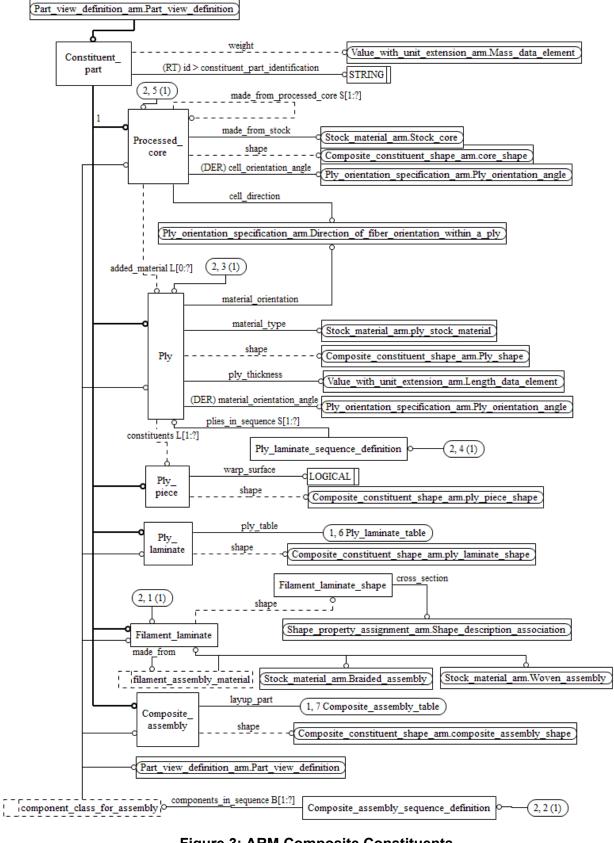



Figure 2: Composite Laminate Table MIM Subtypes

Ply, processed_core, and filament_laminate are the basic constituents in composite parts. A ply laminate is a composite part that is composed of layers or sequences of plies. A composite_assembly is also constructed in layers, except that a composite assembly may have sequences of constituents other than plies, such as processed core, and may contain ply laminates and other composite assemblies as constituents. The ARM diagram illustrating the composite constituents is shown in Figure 3.

Note that there are no specific MIM entities for the composite constituents. The instantiation rules are set in the mapping table of ISO 10303-1770 Part and zone laminate tables. Specific implementation examples are illustrated in 3.1.2.

Figure 3: ARM Composite Constituents

3.1.1 Composite Part Structural Representation

The structural makeup of a composite part is described by a laminate table. The laminate table exists as one of its two subtypes: part laminate table and zone structural makeup. The part laminate table describes allocation of the physical constituents for the overall laminate, while the zone structural makeup is used to describe the physical constituents for a particular zone, area, or point on the part. The part laminate table and zone structural makeup in turn exist as one of their respective subtypes. The part laminate table is called the ply laminate table for a ply laminate part, and the composite assembly table for a composite assembly part. The zone structural makeup may be a thickness laminate table or percentage laminate table that provides allocation of the composite constituents by thickness or percentage, respectively. A smeared material definition is a special case of zone structural makeup representation, where all the composite constituents across the thickness are lumped together.

Associated with each laminate table is a <code>shape_representation</code> for the base surface of the composite part, which includes in its set of items a surface and a direction that specifies the material side. The surface and direction geometric <code>representation_items</code> shall be the first and second <code>representation_items</code> respectively in the items of this <code>shape_representation</code>. The name attribute of the surface <code>representation_item</code> is set to <code>'base_surface'</code>. A second <code>shape_representation</code> may be used to represent the opposing surface that results from the build-up of material on the base surface, with the name attribute of the surface <code>representation_item</code> is set to <code>'resulting_surface'</code>. Both surfaces are represented as <code>shape</code> aspects for the laminate table (Figure 4).

Normally the shape of a composite part is represented by the sum of the shapes of the composite constituents of the laminate table. Optionally associated with a laminate table (and therefore all of its subtypes) is zero, one or many "associated shape" for the cases where another shape representation is required to add information, typically referred to as "Edge of Part" (EOP). The representation context of these associated shape(s) must be identical or related to the representation context of the laminate table. The type of "associated shape" is defined by the shape_aspect.name attribute, where typical values may be such as "nominal shape" or "manufacturing shape", while the attribute shape aspect.description provides further information.

NOTE 1: Figure 4 applies to ply laminate table, composite assembly table, thickness laminate table, percentage laminate table, and smeared material as follows: Ply laminate table and composite assembly table are subtypes of part laminate table, which is in turn a subtype of laminate table. Hence, ply laminate table and composite assembly table inherit all of the attributes of laminate table and part laminate table. Likewise, thickness laminate table, percentage laminate table, and smeared material are subtypes of zone structural makeup, which is in turn a subtype of laminate table. Hence, thickness laminate table, percentage laminate table, and smeared material inherit all of the attributes of laminate table and zone structural makeup. Finally, the "associated shape" in Figure 4 applies to all the subtypes of laminate table. The mapping for these entities are as follows:

laminate table	product_definition
part laminate table	product_definition
zone structural makeup	product_definition
ply laminate table	<pre>ply_laminate_table <= product_definition</pre>
composite assembly table	<pre>composite_assembly_table <= product_definition</pre>
thickness laminate table	<pre>thickness_laminate_table <= product_definition</pre>
percentage laminate table	<pre>percentage_laminate_table <= product_definition</pre>
smeared material	<pre>smeared_material_definition <=</pre>
	product_definition

Table 2: Laminate Table Mappings

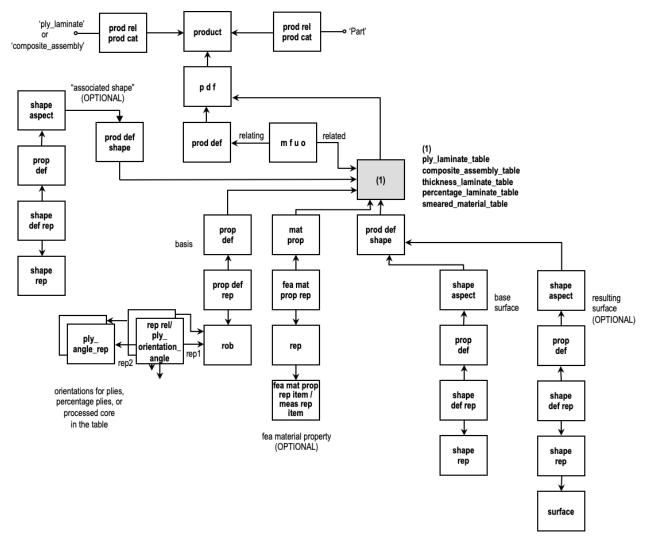


Figure 4: Laminate Table

NOTE 2: Figure 4 also shows a reference to a <code>product_related_product_category</code> with a string of 'Part'. This is quite important as it documents the fact that the <code>laminate_table</code> Part is ALSO the Part that is a member of the product structure.

A laminate table is also characterized by one or many reinforcement orientation bases (rosettes). See 3.1.2.2 for a complete discussion on laminate and ply orientation specification.

NOTE 3: See Annex A for the abbreviations used in Figure 4.

The material properties to be used in the finite element analysis of a composite part may be specified by associating the overall properties to the laminate table. To this end, the fea_-material_property_representation entity is used to relate the material property representation to the product definition for the laminate table.

3.1.1.1 Ply Laminate Table

The ply laminate table that describes the sequencing of ply layers for a ply laminate is represented by a ply_laminate_table in AP242 ed4. The product_definition for a ply laminate part or constituent is related to the ply laminate table by a make_from_usage_option. Each layer in the laminate is represented by a ply_laminate_sequence_definition. The first ply_laminate_sequence_definition in the table is related to the ply_laminate_table by a next_assembly_usage_occurrence entity. The ply_laminate_table is the relating_product_definition, and the ply_laminate_sequence_definition is the related_product_definition in this relationship. Subsequent layers in the ply laminate are likewise related to the preceding layer through next_assembly_usage_occurrences, thus forming a chain of ply_laminate_sequence_definitions (Figure 5). The ply_laminate_table and the associated ply_laminate_sequence_definitions all point to the product_definition formation for the ply laminate part.

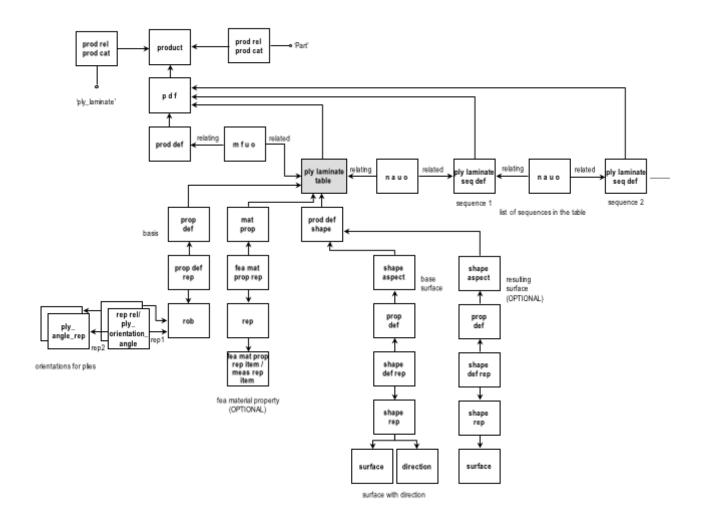


Figure 5: Ply Laminate Table

NOTE 1: See Annex A for the abbreviations used in Figure 5.

NOTE 2: See Figure 4 and Note 1 in 3.1.1 for details of associated an "associated shape".

A layer in a ply laminate may contain one or more plies. Each of the ply product_definitions in a sequence are related to the ply_laminate_sequence_definition by a next_assembly_usage_occurrence entity, forming a tree of ply product_definitions (Figure 6).

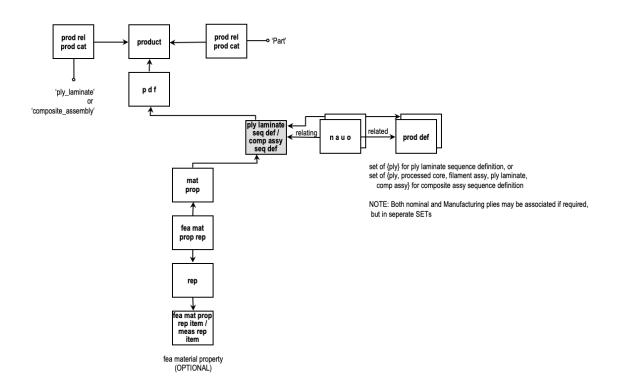


Figure 6: Part Laminate Table Sequence Definitions

NOTE 2: See Annex A for the abbreviations used in Figure 6.

NOTE 3: See Figure 4 and Note 1 in 3.1.1 for details of associated an "associated shape".

The material properties to be used in the finite element analysis of a ply laminate part may be specified by associating the overall properties to the laminate table as discussed above (see 3.1.1.1), or by associating the properties to each sequence in the <code>ply_laminate_table</code>. The <code>fea_material_property_representation</code> entity is used to relate the material property representation to a <code>ply_laminate_sequence_definition</code>.

3.1.1.2 Composite Assembly Table

A composite assembly is similar in structure to a ply laminate, except that a composite assembly may have sequences of constituents other than plies, such as processed core, and may include other assemblies. A composite assembly structure is thus represented by a chain of composite_assembly_sequence_definitions headed by a composite_assembly_table (Figure 6). The composite_assembly_table and the associated composite_assembly_sequence_definitions all point to the product_definition_formation for the composite assembly part.

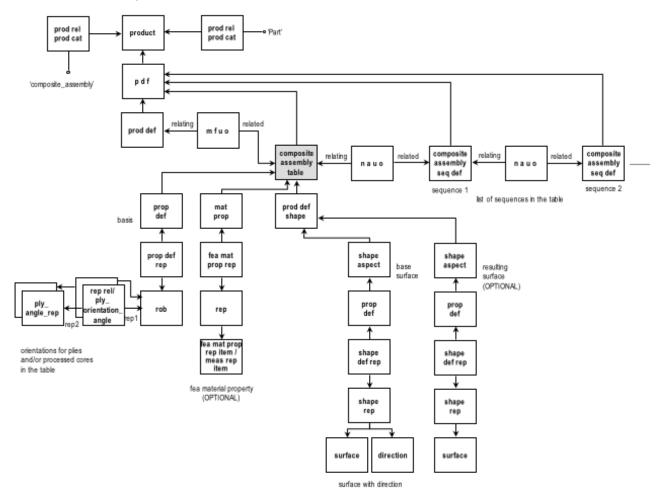


Figure 7: Composite Assembly Table

NOTE 1: See Annex A for the abbreviations used in Figure 7.

NOTE 2: See Figure 4 and Note 1 in 3.1.1 for details of associated an "associated shape".

Like the ply_laminate_sequence_definition, the composite_assembly_sequence_definition is linked to its composite constituent product_definitions through branches of next_assembly_usage_occurrences (Figure 6).

The material properties to be used in the finite element analysis of a composite assembly part may be specified by associating the overall properties to the laminate table as discussed above (see 3.1.1.1), or by associating the properties to each sequence in the <code>composite_assembly_table</code>. The <code>fea_material_property_representation</code> entity is used to relate the material property representation to a <code>composite_assembly_sequence_definition</code>.

3.1.1.3 Thickness Laminate Table

A thickness laminate table, represented by a thickness_laminate_table, is used to specify composite constituents that make up a zone of a composite part. A thickness_laminate_table is structured similar to a composite_assembly_table as can be seen in Figure 8. Since each layer or sequence is local, the corresponding 'sequence' definition contains a single composite constituent that is either a ply, processed_core, or a filament_laminate. The next_assembly_usage_occurrence.relating_product_definition identifies the thickness_laminate_table and the next_assembly_usage_occurrence.related_product_definition identifies the first product in the sequence. Subsequent products are ordered in the same manner using next_assembly_usage_occurrence entities. In addition to the base surface and the optional resulting surface, the zone edge shape may be specified for a thickness laminate table using a shape representation.

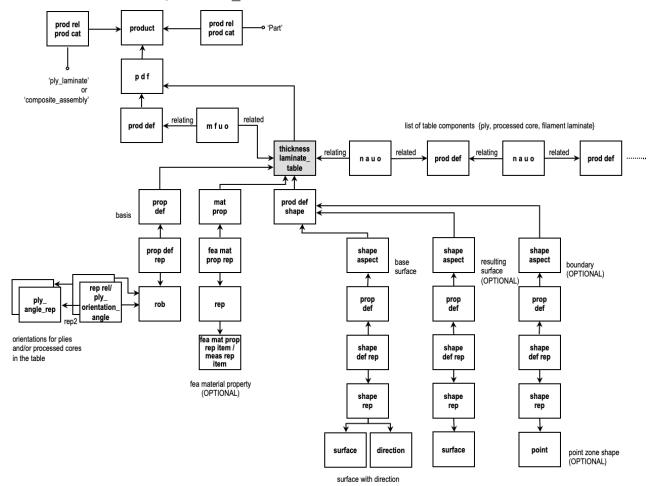


Figure 8: Thickness Laminate Table

NOTE 1: See Annex A for the abbreviations used in Figure 8.

NOTE 2: See Figure 4 and Note 1 in 3.1.1 for details of associated an "associated shape".

When multiple thickness laminate tables intersect, that is, share constituent parts, it may be necessary to distinguish the chain of <code>next_assembly_usage_occurrence</code> entities belonging to a <code>thickness_laminate</code> table form that belonging to another. This can be accomplished by using the same description for all the <code>next_assembly_usage_occurrence</code> entities in a chain that is consistent with the description for the <code>thickness_laminate_table</code> at the top of the chain. This is illustrated in Figure 9.

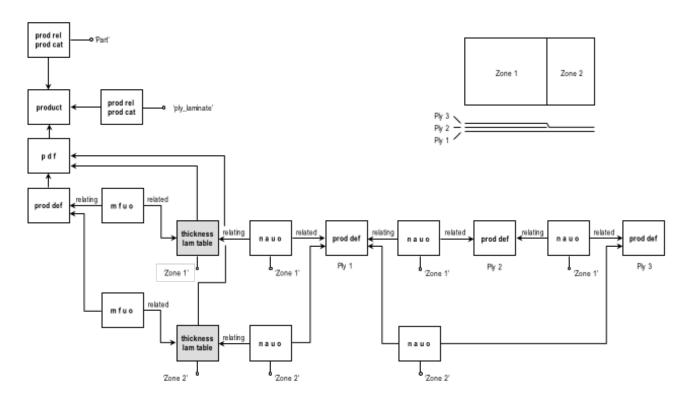


Figure 9: Multiple Zones Sharing Plies

NOTE: See Annex A for the abbreviations used in Figure 9.

3.1.1.4 Percentage Laminate Table

A percentage laminate table, represented by a percentage_laminate_table, is used to specify the percentages of the composite constituents at a point or area of the part. The table components are percentage plies, represented by percentage_ply_definition entities. Each percentage_ply_definition is related to the percentage_laminate_table by a next_assembly_usage_occurrence entity. A shape_representation may be used to represent the edge or point zone shape for the percentage laminate table. A representation is used to specify the total thickness for the zone. The representation shall have a measure_representation_item that has a length_measure_with_unit in its set of items (Figure 10).

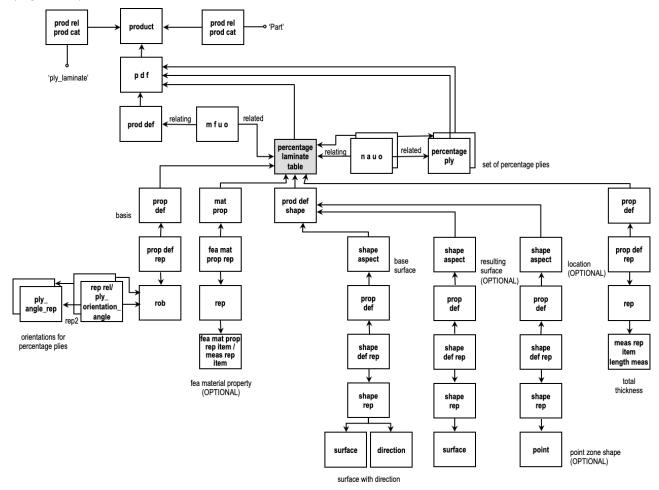


Figure 10: Percentage Laminate Table

NOTE 1: See Annex A for the abbreviations used in Figure 10.

NOTE 2: See Figure 4 and Note 1 in 3.1.1 for details of associated an "associated shape".

3.1.1.5 Percentage Ply

A percentage_ply (Figure 11) is the 'composite constituent' for a percentage laminate table. A make_from_usage_option entity is used to relate the percentage_ply_definition to its stock material product_definition, which is associated with a product in a product_related_product_category with a name of 'filament_assembly', 'discontinuous_fiber_assembly', 'stock_core', 'isotropic_material', or 'anisotropic_material'. The internal makeup of a percentage ply may in turn be specified by one of the zone structural makeup representations.

A percentage_ply has a representation to denote its percentage. The representation shall have a measure_representation_item that is a ratio_measure in its set of items. The volume percents of the percentage plys in the table shall add up to 100%.

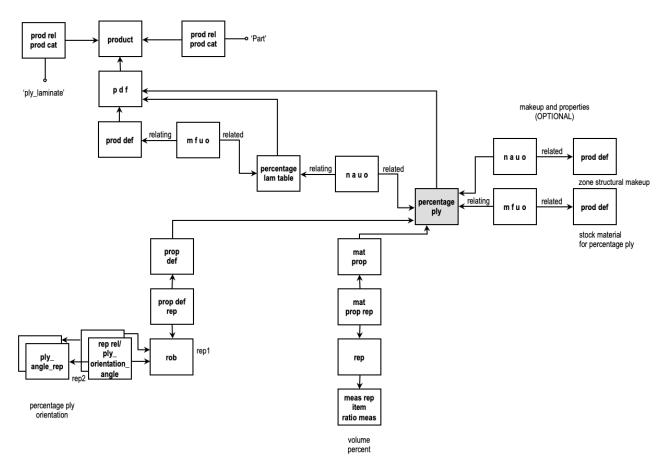


Figure 11: Percentage Ply

NOTE: See Annex A for the abbreviations used in Figure 11.

3.1.1.6 Smeared Material

A smeared_material_definition is an alternate definition that lumps all the composite constituents together (Figure 12). A shape_representation may be used to represent the zone shape for the smeared_material_definition. A representation is used to specify the total thickness. If the smeared material definition is used together with a percentage laminate table or a thickness laminate table, the thickness specified for the smeared_material_definition shall be consistent with that for the percentage_laminate_table, or with the sum of thicknesses of the composite constituents in the thickness laminate table.

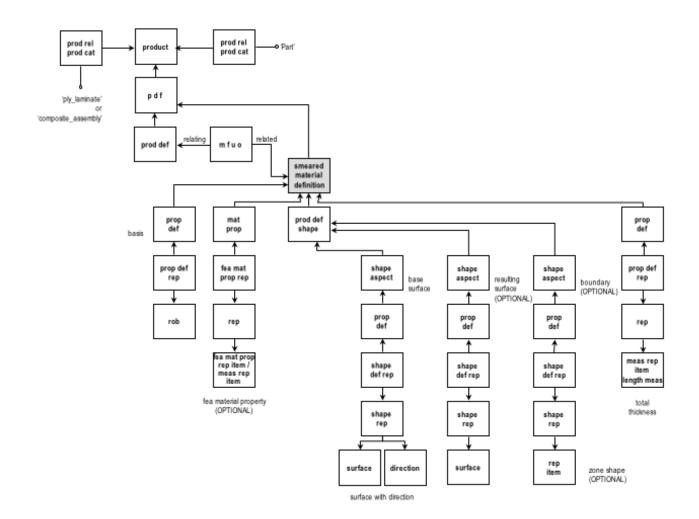
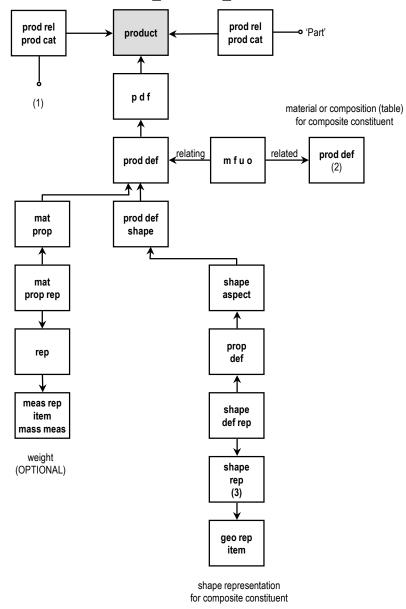


Figure 12: Smeared Material

NOTE: See Annex A for the abbreviations used in Figure 12.

3.1.1.7 Use of Point_zone_shape to represent "Core Samples"


All subtypes of ARM concept Zone_structural_makeup (Percentage_laminate_tabe, Thickness_laminate_table, and Smeared_material) may be of type Point_zone_shape or Edge_zone_shape. It is the Point_zone_shape SUBTYPE that is to be used to represent "Core Samples" – i.e. the laminate table stacking sequence at a point. See Figure 8: Thickness Laminate Table, Figure 10: Percentage Laminate Table, and Figure 12: Smeared Material for the details of how to specify a Point_zone_shape.

3.1.2 Composite Constituent and Shape Representations

In AP 203 ed2, AP 209 ed2, and AP242 ed4 ply, processed core, and filament laminate are the basic composite constituents that are layered to form ply laminates or composite assemblies. Ply laminates and composite assemblies can also be used as composite constituents in a composite assembly.

A composite constituent exists as one of its five subtypes: ply, processed core, filament laminate, ply laminate, and composite assembly. This is indicated by associating the product for the composite constituent with a product_related_product_category that has the corresponding name attribute of 'ply', 'processed core', 'filament laminate', 'ply laminate', or 'composite assembly. The material for a composite constituent is specified by a make_from_usage_option. The constituent product_definition is the relating_product_definition, and the material product_definition is the related_product_definition in this relationship (Figure 13).

Figure 13: Composite Constituents

NOTE: See Annex A for the abbreviations used in Figure 13.

A composite constituent may have a representation to denote the weight of the constituent. A material_property_representation entity is used to link this representation with the property_definition subtype material_property. The representation shall have a measure_representation_item that is a mass_measure_with_unit in its set of items.

3.1.2.1 Ply

A ply product is associated with a product_related_product_category with a name of 'ply' (Figure 14). The ply product_definition is related by a make_from_usage_option to its stock material product_definition, which is associated with a product in a product_related_product_category with a name of 'filament_assembly', 'dicscontinuous_fiber_assembly', or 'isotropic_material'.

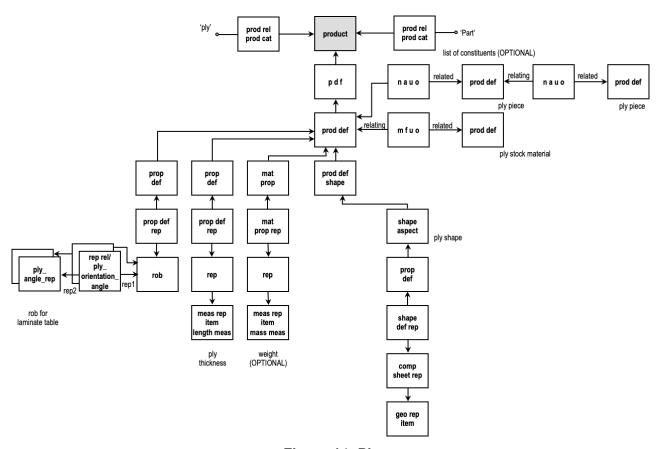


Figure 14: Ply

NOTE: See Annex A for the abbreviations used in Figure 14.

If two or more ply pieces are combined together in a single layer to make up the ply, then the list of the ply pieces shall be given by a chain of <code>next_assembly_usage_occurrence</code> entities. The first <code>next_assembly_usage_occurrence</code> in the chain shall have the <code>product_definition</code> for the ply as the <code>relating_product_definition</code>, and the <code>product_definition</code> for the first ply piece in the list as the <code>related_product_definition</code>. The <code>second next_assembly_usage_occurrence</code> in the chain shall likewise link the <code>product_definitions</code> for the first and <code>second ply pieces</code> in the list, and so on.

A ply has a representation to denote its thickness. The representation shall have a measure_representation_item that is a length_measure_with_unit in its set of items.

A ply_piece may be a Course or Sector, which provide additional information for the manufacturing of plies (Figure 15: Courses and Sector).

A Sector provides the order, path, and specifications of fiber placement in specific area of a ply_piece. The sector_drape_order attribute of a Sector is specified by a chain of product_definition_relationship instances between Sectors head to tail so as to provide order to the list. The sector_strategy_point attribute of a Sector is specified by a cartesian_point associated with a shape_aspect whose .name attribute is 'sector strategy point'. The sector_strategy_curve of a Sector is specified by a curve associated with a shape_aspect whose .name attribute is 'sector strategy curve'. The sector_specifications attribute of a Sector is specified by a product_which has a product_realted_product_category whose .name attribute is set to 'document' that is associated by a product_definiton_relationship.

A Course is a type of ply_piece that is made of multiple materials that are laid in sequence together and bound by the same set of parameters for the layup process. The <code>course_center_line</code> of a Course is specified by a <code>curve</code> associated with a <code>shape_aspect</code> whose <code>.name</code> attribute is 'course center line'. The <code>course_overlap_maximum_tolerance</code> and <code>course_overlap_minimum_tolerance</code> attributes of a Course are specified by a <code>representation</code> whose <code>.name</code> attribute is set to 'maximum tolerance' or 'minimum tolerance'.

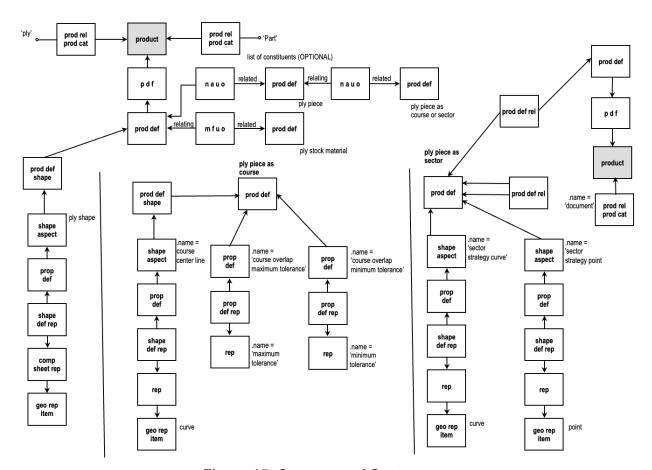
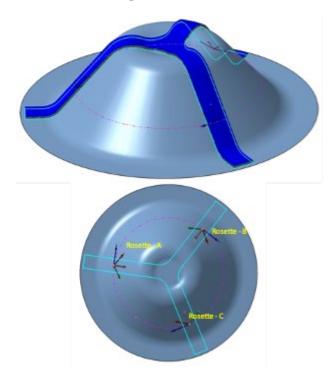


Figure 15: Courses and Sectors


3.1.2.2 Ply Orientation

A ply has a representation to denote its fiber 11 orientation, commonly called a Rosette. The 11 direction is specified by the combination of a reinforcement_orientation_basis that provides the reference (or basis) direction for the ply angle, and an angle that is specified with respect to that basis direction in the plane tangent to the base surface of the laminate table.

There may be one or many reinforcement_orientation_basis in a laminate table. Each ply's material orientation Rosette shall refence one of the reinforcement_orientation_basis of the laminate table. An example of a laminate table utilizing multiple Rosettes is shown in Figure 16.

Note that per the mapping table there should be one {property_definition.name = 'basis'} for each rosette:

```
property_definition.definition
{property_definition.name = 'basis'}
property_definition <-
property_definition_representation.definition
property_definition_representation
property_definition_representation.used_representation ->
representation
```


### ASSAMEN PR-LIVELS PREPS 10721 O Rosetts ASSAMENTALIS PR-CROUP-1 1 Tumple ACCUMENT PR-LIVELS PREPS 10721 O Rosetts #### ACCUMENT PR-LIVELS PREPS 10721 O Rosetts #################################	Canana	Dark Womber	Wine Const.	Canada	Distance.	State of Co.	Driemation	Routte
1-linde SONO South SUPPL SUP	ediments.				rigicale	Maria IV	Name .	Name of Street
Description								
AGNE YEALS PLY GROUP -1 1-Stand BOND 2 Tumple ACCUMINY PLY-LIVEL 2 PLYP2 10721 45 Rounts- ADNE YEALS PLY GROUP -1 1-Stand BOND 3 Tumple ACCUMINY PLY-LIVEL 3 PLYP3 10722 45 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 4 Tumple ACCUMINY PLY-LIVEL 3 PLYP3 10721 90 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 5 Tumple ACCUMINY PLY-LIVEL 5 PLYP3 10721 0 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 6 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 0 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 7 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 45 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 7 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 45 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 8 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 90 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 9 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 0 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 10 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 0 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 10 Tumple ACCUMINY PLY-LIVEL 5 PLYP5 10721 45 Rounts- ADNE YEALS PLY-GROUP -1 1-Stand BOND 10 Tumple ACCUMINY PLY-LIVEL 10 PLYP20 10721 45 Rounts- ADNE YEALS PLY-CROUP -1 1-Stand BOND 11 Tumple ACCUMINY PLY-LIVEL 11 PLYP21 10721 45 Rounts- ADNE YEALS PLY-CROUP -1 1-Stand BOND 1 Tumple ACCUMINY PLY-LIVEL 11 PLYP21 10721 45 Rounts- ADNE YEALS PLY-CROUP -1 1-Stand BOND		-	-	DOLUMB 1	00.000	10771		Routte- A
3-Black SCHOLD 2 SAMELY SEVEN SCHOLD 1		the first institute in the second			Automotive	0.000	- 5	400000000000000000000000000000000000000
Descript ACCUMENT PLY-LEVEL 2 PLYPS 2072 45 Rounts- ACCUMENT PLY-LEVEL 3 PLYPS 2072 45 Rounts- ACCUMENT PLY-LEVEL 3 PLYPS 2072 45 Rounts- ACCUMENT PLY-LEVEL 3 PLYPS 2072 45 Rounts- ACCUMENT PLY-LEVEL 4 PLYPS 2072 50 Rounts- ACCUMENT PLY-LEVEL 5 PLYPS 2072 50 ROUNTS- ACCUMENT P								
## ASSAMELY PER-LEVEL.2 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.2 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.4 PERPE 20721 90 Rounts- ### ASSAMELY PER-LEVEL.4 PERPE 20721 90 Rounts- ### ASSAMELY PER-LEVEL.4 PERPE 20721 90 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 0 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 0 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 90 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 95 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20721 45 Rounts- ### ASSAMELY PER-LEVEL.5 PERPE 20	2			POK-LOVEL 2	20,000	10721	45	Routte- A
1		ASINE YOR ST	PLY GROUP -1					
### ASSAMELY POLYCROLE -1		1-Blade	BOND					
3-Black SONO 1	1	Dample	ASSEMBLY	PUN-LOVEL 3	PLEFE	10721	-45	Routte- A
4 Eample ASSAMEY PLY-LIVELA PLYPA 20721 SO Rounts- ASSAY TALEY PLY-GROUP-1 3-Tales BOTO 5 Eample ASSAMEY PLY-LIVELS PLYPS 10721 O Rounts- ASSAY TALEY PLY-GROUP-1 3-Tales BOTO 6 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY GROUP-1 3-Tales BOTO 7 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY GROUP-1 3-Tales BOTO 8 Eample ASSAMEY PLY-LIVELS PLYPS 10721 50 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 9 Eample ASSAMEY PLY-LIVELS PLYPS 10721 0 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 10 Eample ASSAMEY PLY-LIVELS PLYPS 10721 0 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 10 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 11 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 11 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 11 Eample ASSAMEY PLY-LIVELS PLYPS 10721 45 Rounts- ASSAY TALEY PLY-CROUP-1 3-Tales BOTO 1-Tales BO		ASSAUL YSA 37	PUT GROUP -1					
## ASAM YALI PLYGOUS-1 1-16-06 80W0 5								
1-Made SCHOO Fourth-	4	Dample	ASSEMBLY	FUY-LOVEL-4	2024	10721	90	Routte- A
AGAN YSA37 PLY GROUP -1 1-Hade SONO 6 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 45 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 7 Tample ASSEMBLY PLY-LOVEL7 PLYPT 10721 45 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 8 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 50 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 9 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 0 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 10 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 45 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 10 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 45 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO 1 Tample ASSEMBLY PLY-LOVELS PLYPS 10721 45 Resetts AGAN YSA37 PLY GROUP -1 1-Hade SONO								
1-Black	5				PL195	10721	0	Rosetta - B
6 Sample ASSAMBLY FOR-LOVEL 6 PLYPG 10721 45 Rowtle-ASSAC YEAR OF COLUMN 1 FUND 1 FUN								
ADMETRIAL PRINCIPULE - PRINCIPULE - PRINCIPULE - ASSEMBLY - PRINCIPULE - PRINCIPULE - ASSEMBLY - PRINCIPULE - PRINCIPULE - ASSEMBLY - PRINCIPULE - P	11.00				72020	2244		270000
1-Node 00NO 7 Eample ASSEMBLY FOX-LOVEL 7 PLXFF7 10721 -45 Rosette- ASSEMBLY FALST FOX GROUP -1 1-Node 00NO 8 Eample ASSEMBLY FOX-LOVEL 8 PLXFN 10721 90 Rosette- ASSEMBLY FOX-COOLD -1 1-Node 00NO 9 Eample ASSEMBLY FOX-LOVEL 9 PLXFN 10721 0 Rosette- ASSEMBLY FOX-LOVEL 9 PLXFN 10721 0 Rosette- 1-Node 00NO 10 Eample ASSEMBLY FOX-LOVEL 9 PLXFN 10722 45 Rosette- ASSEMBLY FOX-LOVEL 10 PLXFN 10722 45 Rosette- ASSEMBLY FOX-LOVEL 11 PLXFN 10722 45 ROSETE- ASSEMBLY FOX-LOVEL 11 PLXFN 10722 45 ROSETE					90,196	10721	45	Rosette - B
7 Emmple ASSEMBLY FOX-EDVEL 7 PLXFFT 10771 -45 Rountle- ASSET TAILS FOX GROUP -1 3 Holds SEND 8 Emmple ASSEMBLY FOX-EDVEL 8 PLXFE 10771 50 Rountle- ASSET TAILS FOX GROUP -1 3 Emmple ASSEMBLY FOX-EDVEL 9 PLXFE 10771 0 Rountle- ASSET TAILS FOX GROUP -1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-								
AGAN YALIS PLYCHOLD -1 1-Block BOND I Tumpje AGENNEY PLY-LIVELE PLYPE 10721 SO Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 SO Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 O Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 O Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY-CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY-CHOUL P PLYPE 10721 45 Rosette- AGAN YALIS PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS P PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 Rosette- AGAN YALIS P PLY CHOUL P PLY-LIVEL P PLYPE 10721 45 ROSETE- AGAN YALIS P PLY CHOUL P P PLYPE 10721 45 ROSETE- AGAN YALIS P PLYPE 10721 45 ROSETE- AGAN YALIS P PLYPE 10721 45 ROSETE- AGAN YALIS P PLYPE 10721 10721 45 ROSETE- AGAN YALIS P P P P P P P P P P P P P P P P P P P	-			*** TOTAL **	-	0.00000	- 40	Secretary 8
3-Back SONO SUMEY FLY-LEVEL B PLYPE 10721 50 Rounts- AGRETICAL P 1 CHOLUP - 1 3-Back SONO 1 CHOLUP - 1 4-Back SONO 1 CHOLUP - 1 5-Back SONO 1 CHOLUP - 1					MAPE	40744	-40	AGRECA - B
Emergie ACEMBEY PLY-LEVEL 8 PLYPE 10721 50 Rounts- ADMEY 19 LT 37 PLY GROUN - 1 1-Black 50 NO 9 Emergie ACEMBEY PLY-LEVEL 9 PLYPE 10721 0 Rounts- ADMEY 19 LT 37 PLY GROUN - 1 1-Black 50 NO 10 Emergie ACEMBEY PLY-LEVEL 30 PLYPED 10721 45 Rounts- ADMEY 19 LT 37 PLY GROUN - 1 1-Black 50 NO 11 Emergie ACEMBEY PLY-LEVEL 11 PLYPEI 10771 45 Rounts- ADMEY 19 LT 37 PLY GROUN - 1 1-Black 50 NO 1-Bla								
AGAM YALIS PAY-GROUP-1 3-Black SCAC 9 Eample ASEMBLY PEX-LEVELS PLXPS 10721 0 Rearts- AGAM YALIS PAY-GROUP-1 1-Black SCACA PAY-LEVEL 30 PEX-P20 10721 45 Rearts- AGAM YALIS PEX-GROUP-1 3-Black SCACA PAY-LEVEL 31 PEX-P20 10721 45 Rearts- AGAM YALIS PEX-GROUP-1 1-Black SCACA PAY-LEVEL 11 PEX-P21 10721 45 Rearts- AGAM YALIS PEX-GROUP-1 1-Black SCACA PEX-REVEL 11 PEX-P21 10721 45 Rearts- AGAM YALIS PEX-GROUP-1 1-Black SCACA PEX-REVEL 11 PEX-P21 10721 45 Rearts-				PUT-LOVEL B	93796	10721	90	Routte-B
1-Nede SCHO 9 Eample ACENNEY FOR-LOVELS FLXPS 10721 O Rosefts- ASMAYYALTS FOR CROUP-1 1-Nade SCHOOL 10 Eample ACENNEY FOR-LOVEL 30 FCXF20 10721 45 Rosefts- ASMAYYALTS FOR CROUP-1 1-Nade SCHOOL 11 Eample ACENNEY FOR-LOVEL 11 FCXF21 10721 45 Rosefts- ASMAYYALTS FOR CROUP-1 1-Nade SCHOOL	1005				heeron	0201	100	
ASME YEAUT PLY GROUP -1 1-1-lack 80NO 1-1 10 Europe ASSEMBLY FLY-LEVEL 20 FLY-F10 10721 45 Foorts ASME YEAUT PLY GROUP -1 1-1-lack 80NO 1 11 Europe ASSEMBLY FLY-LEVEL 11 FLY-F11 10721 45 Foorts ASME YEAUT PLY GROUP -1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-								
1-Hade 80NO 10 DENGE	9	Dample	ASSENSEY	POY-LOVEL 9	2009	10721	0	Rosette - C
10 Emergie ASSENMENT FUN-LTVEL.20 PEX-F20 10721 45 Reverte-ASMEYPA-17 FUN-GROUP-1 1-1446 80NO 11 Emergie ASSENMENT FUN-LTVEL.11 PEX-F11 10721 45 Reverte-ASMEYPA-17 FUN-GROUP-1 1-1446 80NO		ASSUE YSA 37	PLY GROUP -1					
ASSE YALIS POYGROUP 1 3-Blode BOND 11 Europie ASSENBEY PER-EFVELII PER-PII 10721 45 Rowells- ASSE YALIS PER-GROUP 1 3-Bade BOND 1-Bade BOND		3-Blade	BOND					
3-Black 80NO 11 Europie ASSEMBLY FUX-LEVEL.11 FEX.F11 10721 -45 Roards- AGNEVALT FUX-GROUP-1 3-Black 80NO	10				PLYF20	10721	45	Fourtte - C
11 Emmple ASSEMBLY FCY-LEVEL11 FCYF11 10721 -45 Fourth- ASAK YALIY FLYGROUP-1 1-Bade SCHO-1								
ASNE Y14.17 PLY GROUP -1 3-Bade 80NO	10/200			100012		0.00	122	150
3-Bade 90NO	11				PULPII	10721	-45	Roorts - C
	12	Lumple			PUX P12	10721	90	Rosette - C

Figure 16: Example: Multiple Rosettes for a Laminate Table

There are several ways to represent basis of the ply fiber orientation (see Figure 17):

- A cartesian_11 Rosette specifies that the basis 11 is the 11 direction of an axis2_placement_3d entity whose 33 direction is the upward (towards the topmost ply in the table) normal to the base surface of the laminate table;
- A curve_11 Rosette specifies that the basis 11 direction is the tangent to the specified curve at any point along the curve where the 11 direction is to be evaluated. The ply_orientation_angle is right hand positive around the 33 direction normal to the plane, where the plane shall be tangent to the base_surface of the laminate_table. The 11 direction has an additional angle offset that is added to the ply orientation angle with

complex instantiation of bounded_curve+composite_curve+curve+geometric_representation_item+measure_with_unit+representation_item as in #2 in the example below:

```
#2=(BOUNDED_CURVE()COMPOSITE_CURVE($,$)CURVE()CURVE_11()

GEOMETRIC_REPRESENTATION_ITEM()MEASURE_REPRESENTATION_ITEM()

MEASURE_WITH_UNIT($,$)REPRESENTATION_ITEM($));
```

Figure 18: Ply Orietation by Curve - Offset and Reverse Specification illustrates how the curve 11 attributes fiber 11 offset and reverse are instantiated.

- A cylindrical_11 Rosette specifies that the basis 11 direction is a tangent to the curve at any point evaluated along a curve on the surface of the cylinder where the curve is created by the intersection of the cylinder surface with a plane through the centerline of the cylinder. The ply_orientation_angle is specified by right hand rule about the 33 direction of the outward facing normal to the plane tangent to the cylindrical base_surface of the laminate_table at the evaluated point;
- A polar_11 Rosette specifies that the basis 11 direction is always in the radial direction from the center of the part. A Radial Rosette shall be placed in the exact center of the part, for example at the apex of a spherical cap. When the Rosette mapping takes place the direction of the 0° orientation is pointing outward in a radial direction. No guide curve is required. The ply_orientation_angle is with respect to the plane tangent to the base_surface of the laminate_table with the 33 direction parallel to the outward normal of the base_surface.

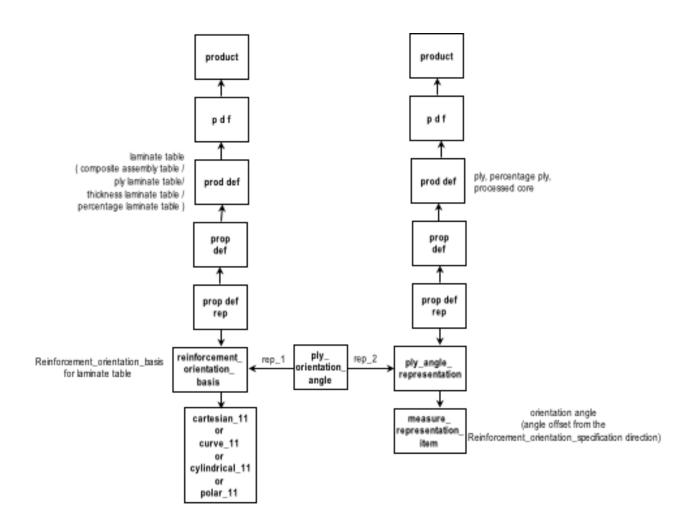


Figure 17: Ply Orientation Angle by Cartesian Placement, Curve, Cylindrical, or Polar 11 Basis Direction

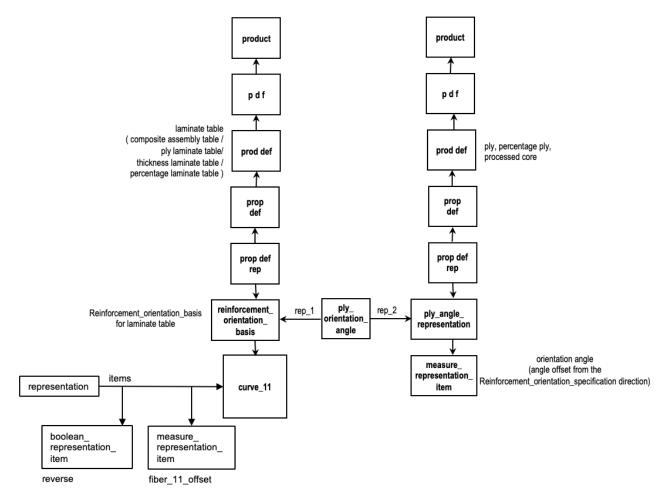


Figure 18: Ply Orietation by Curve - Offset and Reverse Specification

NOTE 1: The full description of these ply orientation options is specified in Clause 4 of ISO 10303-1772 Ply orientation specification.

NOTE 2: See Annex A for the abbreviations used in Figure 17.

If the ply orientation is specified by a <code>point_array</code>, the major and minor directions of the <code>point_and_vector</code> entities in the point path will be associated with the axis direction of the <code>axis2_placement_3d</code>). A point array is represented in AP 203 ed2, AP 209 ed2 and AP 242 ed4 by a chain of <code>point_and_vector</code> entities, headed by a <code>point_array</code>. The <code>point_array</code> and <code>point_and_vector</code> are both subtypes of <code>shape_representation</code>. A <code>point_and_vector</code> represents a point and the associated vector pairs on a point path. The first <code>representation_item</code> in the <code>items</code> of a <code>point_and_vector</code> shall be a <code>point</code> entity, the second a <code>direction</code> entity representing the major direction, and the third a <code>direction</code> entity representing the minor direction) (see Figure 19: Ply Orientation by Point Array).

NOTE 3: The ply 11 and 22 directions are known only at the points of the point_array. If the ply orientations need to be known in-between them a suitable interpolation scheme, such as spline surfaces, should be used.

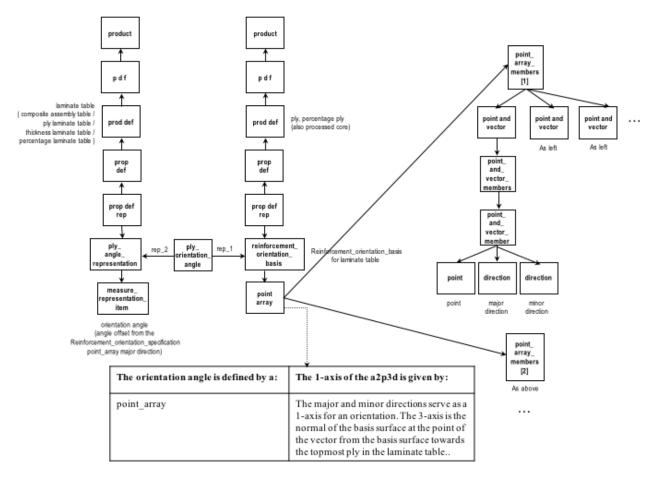


Figure 19: Ply Orientation by Point Array

NOTE: See Annex A for the abbreviations used in Figure 19.

Some composite structural modeling tools allow and/or require that a ply orientation angle be named. In this case the inherited .name attribute of the cartesian_11, curve_11, cylindrical_11 or polar_11 entity shall be used for the name.

Alternately, the ply orientation may be specified implicitly through a user defined specification. This method allows a proprietary method to be specified (see Figure 20).

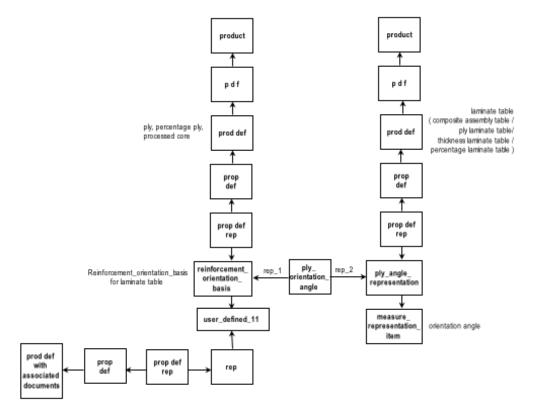


Figure 20: Ply Orientation by User Defined Specification

NOTE: See Annex A for the abbreviations used in Figure 20.

3.1.2.3 Ply Shape

The shape of a ply is represented by a <code>product_definition_shape</code> entity. Shape_aspects that represent various features of the ply shape point to this <code>product_definition_shape</code>. The <code>name</code> attribute of the <code>shape_aspect</code> shall describe the feature that is being represented, such as 'laid ply shape', 'basis surface', and 'outer edge'.

The shape of a ply may be a nominal design shape, or a manufacturing shape. Figure 21 illustrates these types of shapes.

Note: The use of both nominal design and manufacturing ply shapes is illustrated in Figure 6: Part Laminate Table Sequence Definitions. The intent is that there be complete sequences for both the nominal design and manufacturing shape representations if both are desired in the same laminate table.

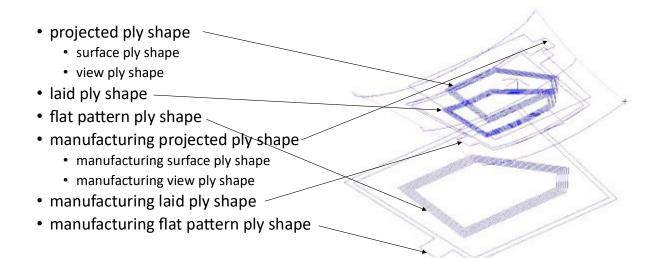


Figure 21: Types of Ply Shapes

The defining model for a ply shape is given by a <code>shape_representation</code> that is a <code>composite_sheet_representation</code>, an <code>advanced_brep_shape_representation</code>, a <code>csg_shape_representation</code>, a <code>curve_swept_solid_shape_representation</code>, an elementary_brep_shape_representation, a <code>tessellated_shape_representation</code>, or a <code>faceted_brep_shape_representation</code>. The <code>composite_sheet_representation</code> shall be either a <code>geometrically_bounded_surface_shape_representation</code> or a <code>manifold_surface_shape_representation</code> (Figure 22).

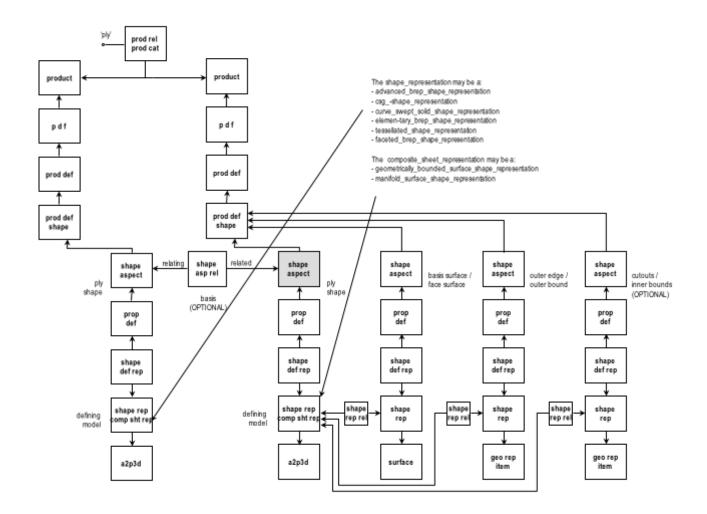


Figure 22: Ply Shape

NOTE: See Annex A for the abbreviations used in Figure 22.

Associated with the defining model <code>shape_representation</code> are the <code>shape_representations</code> for: a) the basis or face surface of the ply with a corresponding <code>shape_aspect.name</code> of 'basis surface' or 'face surface'; b) outer edge or bound of the ply with a corresponding <code>shape_aspect.name</code> of 'outer edge' or 'outer bound'; and, optionally, c) the cutouts or inner bounds for the ply with a corresponding <code>shape_aspect.name</code> of 'cutouts' or 'innerbounds'. Each of these <code>shape_representations</code> is related to the defining model <code>shape_representation</code> by a <code>shape_representation_relationship</code>.

If the shape of a ply is based on or derived from another ply shape, then this relationship is represented by a <code>shape_aspect_relationship</code> between the <code>shape_aspects</code> for the defining model <code>shape_representations</code> of the two plies. The <code>name</code> attribute of the <code>shape_-aspect</code> relationship is set to 'basis'.

A ply shape may be one of: laid ply shape, flat pattern ply shape, projected ply shape, manufacturing laid ply shape, manufacturing flat pattern ply shape, or manufacturing projected ply shape.

For a laid ply shape, the name of the shape_aspect for the defining model is set to 'laid ply shape' or 'manufacturing laid ply shape'.

For a flat pattern ply shape, the name of the shape_aspect for the defining model is set to 'flat pattern ply shape' or 'manufacturing flat pattern ply shape' (see Figure 23).

The flat pattern plane attribute specifies the plane of the flat pattern ply shape.

The wrapup origin on the flat pattern is represented by the wrapup_origin_on_plane attribute in the items of the flat pattern shape representation.

The flat_pattern_rosette_on_plane is the rosette specifying fiber 11 direction on the projected plane.

The wrapup origin on the 3D shape representation of the ply is represented by the origin of the placement representation_item in the items of the 3D shape_representation from which the flat pattern is derived.

The shape_representations are linked together by a complex entity that is a flat_pattern_ply_representation_relationship and a representation_relationship_with_transformation. The rep_1 attribute of the representation_relationship_with_transformation represents the 3D shape representation and the rep_2 attribute is the flat pattern shape_representation. The transformation_operator attribute points to the item_defined_transformation entity that serves to match the origin points on the flat pattern and surface.

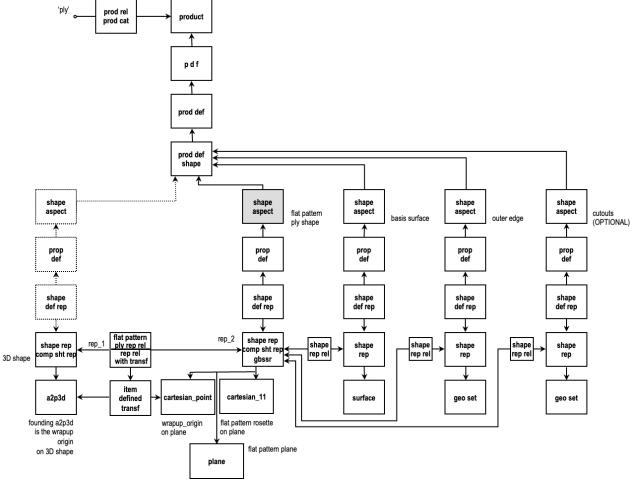


Figure 23: Flat Pattern Ply Shape

NOTE: See Annex A for the abbreviations used in Figure 23.

For a projected ply shape, the ply shape may be a surface ply shape or a view ply shape depending on whether the ply shape is projected on a surface or a plane. The name of the <code>shape_aspect</code> for the defining model is set to: 'reference direction projected surface ply shape', 'surface normal projected surface ply shape', 'reference direction projected view ply shape', 'surface normal projected view ply shape', 'manufacturing reference direction projected surface ply shape', 'manufacturing surface normal projected surface ply shape', 'manufacturing reference direction projected view ply shape', or 'manufacturing surface normal projected view ply shape' based on the projection method. If a direction other than the surface normal is used, a <code>shape_aspect</code> representing the projection direction is associated with the <code>product_definition_shape</code>, and a <code>placement</code> entity referencing the projection direction is included in the set of items of the corresponding shape representation (see Figure 24).

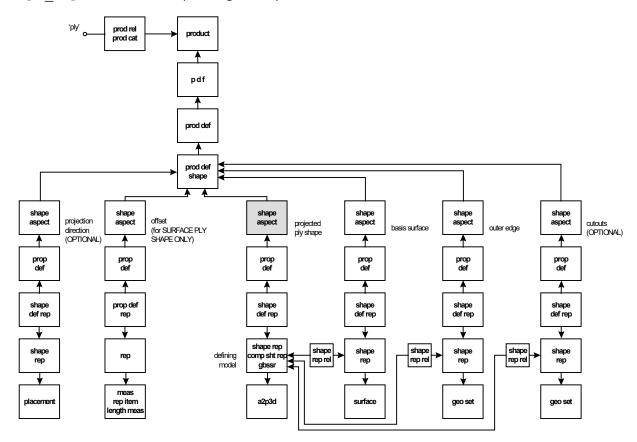


Figure 24: Projected Ply Shape (Surface Ply Shape or View Ply Shape)

NOTE: See Annex A for the abbreviations used in Figure 24.

For a surface ply shape, the context of the surface is indicated by the description attribute of the shape_aspect for the defining model. It is recommended that the description be set to: 'layup surface', 'outer mold line', or 'inner mold line'. The offset distance from the layup surface is represented by a separate shape_aspect. The corresponding representation shall have a measure representation item that is a length measure with unit in its set of items.

3.1.2.4 Processed Core

A processed core product is associated with a product_related_product_category with a name of 'processed core' (Figure 25, Figure 26).

The processed core product_definition is related by a make_from_usage_option entity to its stock material product_definition, which will be associated with a product in a product_related_product_category with a name of 'stock_core'.

Processed core may have one of two different types of shape representations. The first type of shape representation is a beveled sheet representation (Figure 25) that is a sheet with thickness and beveled edges. The second type of shape representation is a solid model (Figure 26) where the core shape is a type of solid model. See ISO/TS 10303-1767:2014-02(E) Composite constituent shape clause 4.3 for more details on the types of processed core shape representations.

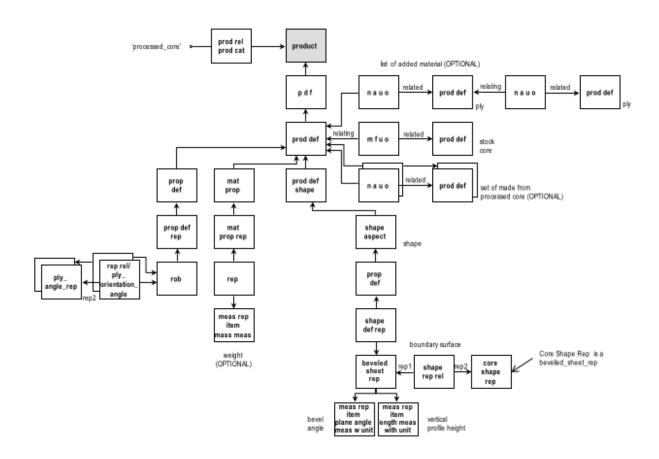


Figure 25: Processed Core - Beveled Sheet Representation Case

NOTE 1: See Annex A for the abbreviations used in Figure 25.

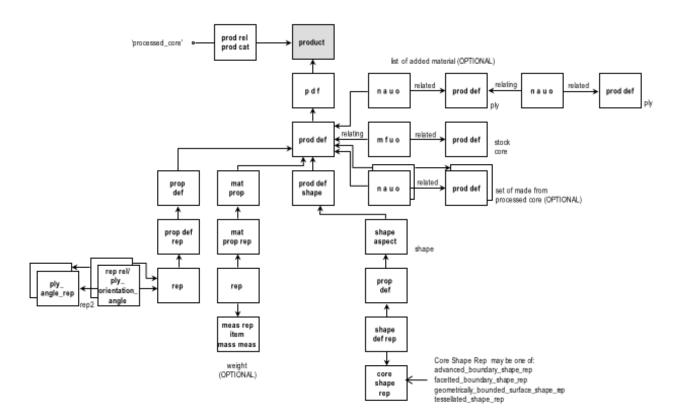


Figure 26: Processed Core - Solid Shape Representation Case

NOTE 2: See Annex A for the abbreviations used in Figure 26.

The list of any added material such as stabilizer, adhesive, and potting compound shall be given by a chain of next_assembly_usage_occurrence entities. The first next_assembly_usage_occurrence in the chain shall have the product_definition for the processed core as the relating_product_definition; the product_definition for the ply where the first added material in the list is applied shall be the related_product_definition. The successive next_assembly_usage_occurrences in the chain shall likewise link the product_definitions for the plies where subsequent added material in the list are applied.

If the processed core is made from one or more processed cores, then the $product_definitions$ for the latter shall be related to that for the former by a set of $next_-assembly_usage_occurrence$ entities.

3.1.2.5 Core Orientation

A processed core has a cell orientation, i.e., the ribbon direction for the core. The orientation angle is derived in the manner described for a ply - see 3.1.2.2 for details.

3.1.2.6 Core Shape

The shape of a processed core may be represented by an advanced_boundary_shape_representation, geometric-ally_bounded_surface_shape_representation, a tessellated_representation or a beveled_sheet_representation. A beveled_sheet_representation is a subtype of shape_representation whose base boundary surface is based on a composite_-sheet_representation. Two measure_representation_items characterize a beveled_sheet_representation. The first measure_representation_item in its set of items is a plane_angle_measure_with_unit representing the angle between the surface normal of the base surface to the beveled surface. The second is a length_measure_with_unit representing the height of the core measured vertically from the base surface.

3.1.2.7 Filament Laminate

A filament laminate product is associated with a product_related_product_category with a name of 'filament_laminate' (Figure 27). The filament laminate product_definition is related by a make_from_usage_option entity to its filament assembly product_definition, which will be associated with a product in a product_related_product_category with a name of 'filament assembly'.

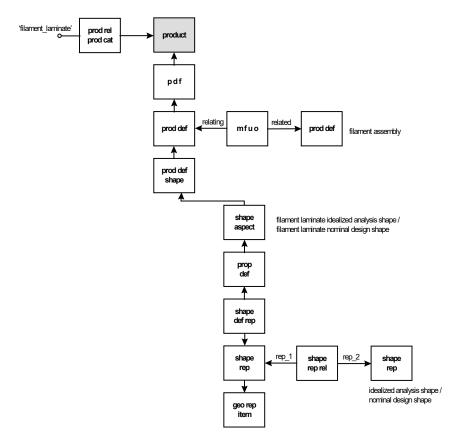


Figure 27: Filament Laminate

NOTE: See Annex A for the abbreviations used in Figure 27.

The shape of a filament laminate is given by a <code>shape_representation</code> for its cross section. This <code>shape_representation</code> is related to the nominal design or idealized analysis <code>shape_representation</code> through a <code>shape_representation_relationship</code>. The <code>name</code> of the <code>shape_aspect</code> is set accordingly to 'filament_laminate_nominal_design_shape' or 'filament_laminate idealized analysis <code>shape</code>'.

3.1.2.8 Ply Laminate

A ply laminate product is associated with a product_related_product_category with a name of 'ply_laminate' (Figure 28). The ply laminate product_definition is related by a make_from_usage_option to the product_definition for the ply laminate table that is represented by a ply laminate table (see 3.1.1.1).

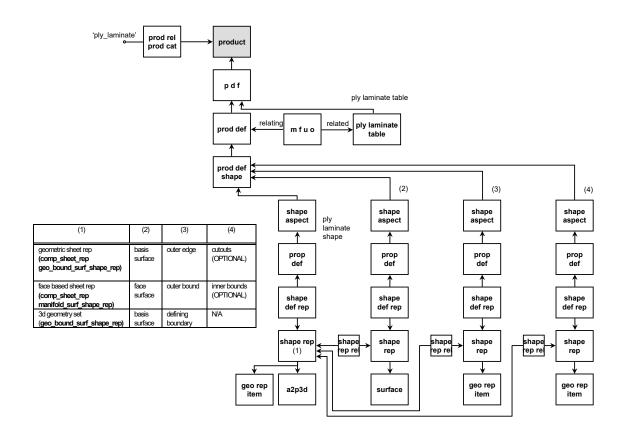


Figure 28: Ply Laminate

NOTE: See Annex A for the abbreviations used in Figure 28.

The shape of a ply laminate may be represented by a <code>composite_sheet_representation</code> or a 3D geometry set. The <code>composite_sheet_representation</code> shall be a <code>geometrically_bounded_surface_shape_representation</code> or a <code>manifold_surface_shape_representation</code>. Associated with the <code>composite_sheet_representation</code> are <code>shape_representations</code> for the basis or face surface of the ply laminate, outer edge or bound of the ply laminate, and optionally the cutouts or inner bounds for the ply laminate (see 3.1.2.8 for the respective <code>shape_aspect.name values</code>). Each of these <code>shape_representations</code> is related to the ply laminate <code>shape_representation by a shape_representation_relationship.</code>

A 3D geometry set shape is represented by a <code>geometrically_bounded_surface_-shape_representation</code> entity. Associated with this <code>shape_representation</code> are <code>shape_-representations</code> for the basis surface of the ply laminate (<code>shape_aspect.name</code> of 'basis_surface') and the defining boundary of the ply laminate (<code>shape_aspect.name</code> of 'defining_boundary'). The context of the basis surface is indicated by setting the description attribute of the corresponding <code>shape_aspect</code> to 'layup surface', 'outer mold line', or 'inner mold line'.

3.1.2.9 Composite Assembly

A composite assembly product is associated with a product_related_product_category with a name of 'composite_assembly' (Figure 29). The composite assembly product_-definition is related by a make_from_usage_option to the product_definition for the composite assembly table, represented by a composite_assembly_table (see 0).

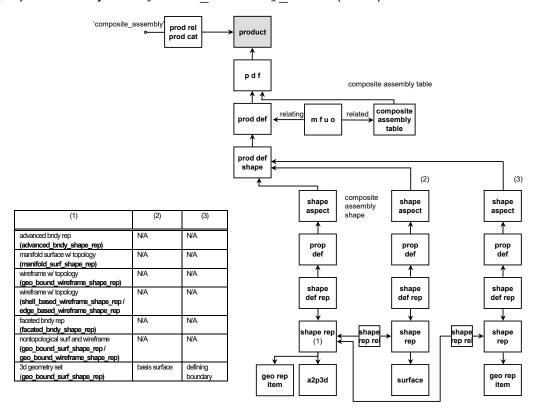


Figure 29: Composite Assembly

NOTE: See Annex A for the abbreviations used in Figure 29.

The shape of a composite assembly may be represented by one of the following shape representations: advanced or faceted boundary representation (advanced_boundary_shape_representation); manifold surface with topology (manifold_surface_shape_representation); wireframe with topology (shell_based_wireframe_shape_representation or edge_based_wireframe_shape_representation); nontopological surface and wireframe (geometrically_bounded_surface_shape_representation or geometrically_bounded_wireframe_shape_representation); or a 3D geometry set (geometrically_bounded_surface_shape_representation).

3.1.3 Materials and Properties

Stock material is treated as a product in AP 203 ed2, AP 209 ed2 and AP242 ed4. A stock material product shall be among the products of a product_related_product_category with a name of: 'isotropic_material', 'anisotropic_material', 'filament_assembly', 'discontinuous_fiber_assembly', 'braided_assembly', 'woven_assembly', or 'stock_core' (Figure 30). The stock_material product_definition may have an approval in AP 203 ed2, AP 209 ed2 and AP242 ed4.

Material properties, including finite element analysis material properties, are represented by the property_definition subtype material_property. The name attribute inherited from the property_definition supertype is used to denote the particular property being qualified or quantified. The material_property_representation entity links a material_property to a representation that may contain a measure_representation_item in its set of items to provide a quantitative value the property.

Conditions such as temperature and moisture content that relate to the material properties are grouped in a data_environment that is referenced by the material_property_representation entities as their dependent_environment. The representation for each condition is associated with the stock material through a property_definition. The representation of a material reference direction is likewise associated with the stock material through a property_definition.

3.1.3.1 Material Specifications

Material specifications that are applicable to a stock material are related to the stock material product_definition through an applied_document_reference entity. The stock material product_definition is contained in the items of the applied_document_reference. The assigned_document attribute inherited from the document_reference supertype of applied document reference points to the specification document (Figure 30).

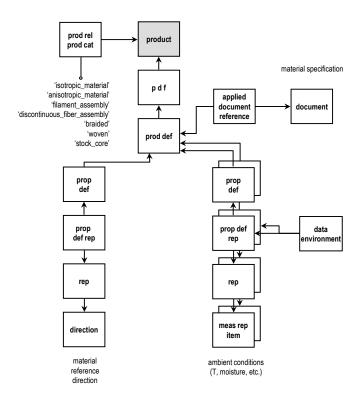


Figure 30: Stock Material

NOTE: See Annex A for the abbreviations used in Figure 30.

3.1.3.2 Material Callout

The designation of the material for a part is accomplished through a <code>make_from_usage_option</code> entity. The <code>make_from_usage_option.relating_product_definition</code> shall be the 'design discipline' <code>product_definition</code> for the part. If the component part or the composite constituent is produced from a single material, then the <code>make_from_usage_option.related_product_definition</code> shall be the <code>product_definition</code> for the material (such as an 'isotropic material', 'anisotropic material', or 'filament assembly'). If the component part is a composite, the <code>make_from_usage_option.related_product_definition</code> shall be the <code>product_definition</code> shall be the <code>product_definition</code> for the laminate table representation (e.g., <code>ply_laminate_table</code>, <code>composite_assembly_table</code>, <code>or</code> thickness_laminate_table).

4 Limited Length or Area Indicator Assignments (LLAI) for laminate tables

A Limited_length_area_indicator provides information about constraints for point, length or area aspects of a laminate table (Figure 31: Limited Length or Area Assignments). A user defined LLAI is also provided for those cases not covered by the point, line, or area LLAI assignments.

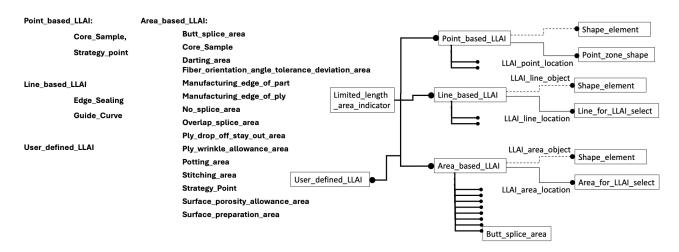


Figure 31: Limited Length or Area Assignments

4.1 Point Based LLAI

The inherited <code>llai_point_object</code> attribute of the <code>point_based_llai</code> SUBTYPEs that identifies the type of object for the <code>point_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 32: Point Based LLAI.

The inherited <code>llai_point_location</code> attribute of the <code>point_based_llai</code> that optionally identifies the location of the <code>point_based_llai</code> SUBTYPEs is specified by the associated <code>shape_aspect</code> that is a <code>Shape_element</code>.

There is a specific type of specification document associated to the <code>point_based_llai</code> SUB-TYPEs that is optionally specified by an associated <code>product</code> that has a <code>product_related</code> <code>product_category</code> whose <code>.name</code> attribute is 'document'.

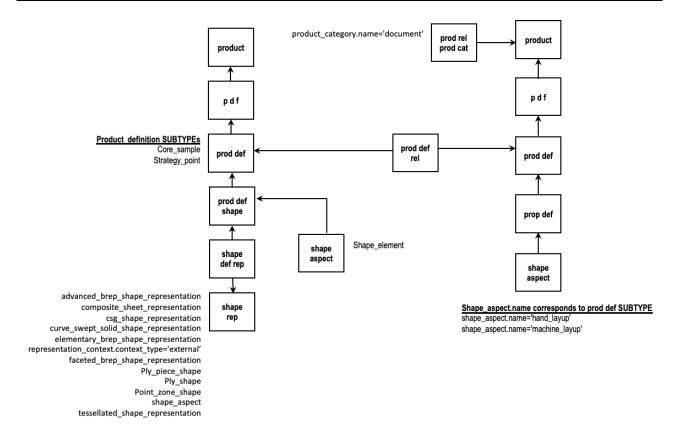


Figure 32: Point Based LLAI

4.2 Line Based LLAI

The inherited <code>llai_line_object</code> attribute of the <code>line_based_llai</code> SUBTYPEs that identifies the type of object for the <code>line_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 33: Line Based LLAI.

The inherited <code>llai_line_location</code> attribute of the <code>line_based_llai</code> that optionally identifies the location of the <code>line_based_llai</code> SUBTYPEs is specified by the associated <code>shape_aspect</code> that is a <code>shape_element</code>.

There is a specific type of specification document associated to the <code>line_based_llai</code> SUBTYPEs that is optionally specified by an associated <code>product that has a product_related_product_category</code> whose <code>.name</code> attribute is 'document'.

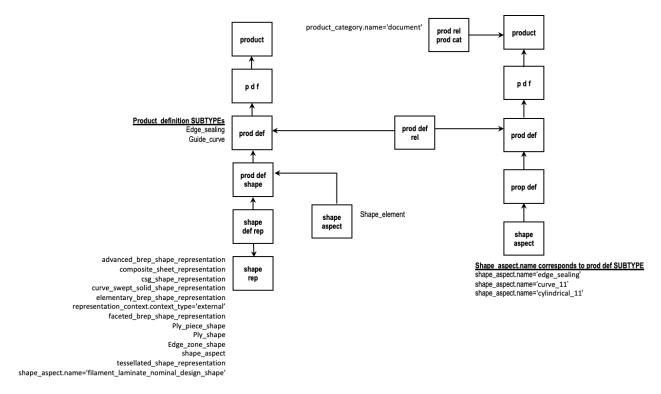


Figure 33: Line Based LLAI

4.3 Area Based LLAI (Excluding Butt and Overlap Splice Areas)

The inherited <code>llai_area_object</code> attribute of the <code>area_based_llai</code> SUBTYPEs that identifies the type of object for the <code>area_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 33: Line Based LLAI.

The inherited <code>llai_area_location</code> attribute of the <code>area_based_llai</code> that optionally identifies the location of the <code>area_based_llai</code> SUBTYPEs is specified by the associated <code>shape_aspect</code> that is a <code>Shape element</code>.

There is a specific type of specification document associated to the <code>area_based_llai SUBTYPEs</code> that is optionally specified by an associated <code>product that has a product_related_product category whose .name attribute is 'document'.</code>

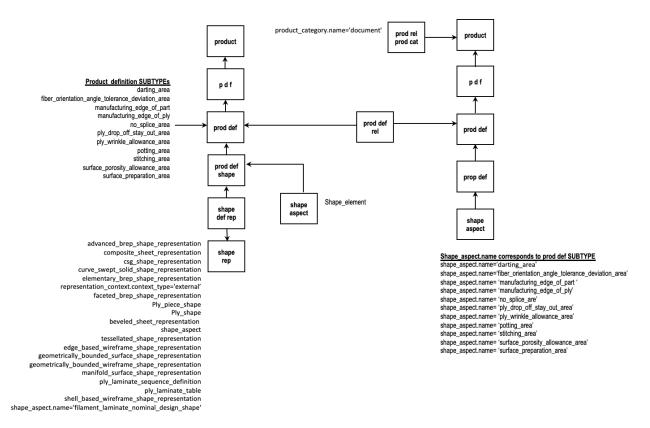


Figure 34: Area Based LLAI (Excluding Butt and Overlap Splice Areas)

4.4 Area Based LLAI (Butt Splice Area)

The inherited <code>llai_area_object</code> attribute of the <code>area_based_llai</code> SUBTYPE <code>butt_splice_area</code> that identifies the type of object for the <code>area_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 35: Area Based LLAI (Butt Splice Area).

The inherited <code>llai_area_location</code> attribute of the <code>area_based_llai</code> that optionally identifies the location of the <code>area_based_llai</code> SUBTYPE <code>butt_splice_area</code> is specified by the associated <code>shape aspect</code> that is a <code>Shape element</code>.

There is a specific type of specification document associated to the <code>area_based_llai SUBTYPE</code> <code>butt_splice_area</code> that is optionally specified by an associated <code>product_that</code> has a <code>product_related_product_category</code> whose <code>.name</code> attribute is 'document'.

The allowed_repeat_pattern attribute of the area_based_llai SUBTYPE butt_splice_area that the number of times it is permissible to use the same joining design in a specific butt splice area is specified by the associated property_definition with an associated count measure.

The butt_direction attribute of the area_based_llai SUBTYPE butt_splice_area that specifies an indication of the path or orientation along which the butt splice area has been laid.is specified by the associated property definition with an associated direction.

The stagger_distance attribute of the area_based_llai SUBTYPE butt_splice_area that specifies measure of the distance from the edge of one butt splice to the edge of another butt splice is specified by the associated property_definition whose .description attribute is set to 'stagger distance' with an associated length measure_with_unit.

The gap attribute of the <code>area_based_llai</code> SUBTYPE <code>butt_splice_area</code> that specifies a measure of the distance between the butts forming the butt splice area is specified by the associated <code>property_definition</code> whose <code>.description</code> attribute is set to 'gap' with an <code>associated</code> <code>length_measure_with_unit</code>.

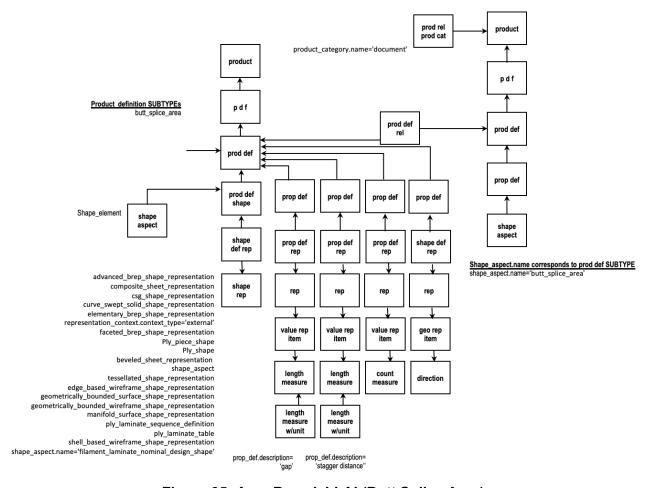


Figure 35: Area Based LLAI (Butt Splice Area)

4.5 Area Based LLAI (Overlap Splice Area)

The inherited <code>llai_area_object</code> attribute of the <code>area_based_llai</code> SUBTYPE <code>over-lap_splice_area</code> that identifies the type of object for the <code>area_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 36: Area Based LLAI (Overlap Splice Area).

The inherited <code>llai_area_location</code> attribute of the <code>area_based_llai</code> that optionally identifies the location of the <code>area_based_llai</code> SUBTYPE <code>overlap_splice_area</code> is specified by the associated <code>shape aspect</code> that is a <code>Shape element</code>.

There is a specific type of specification document associated to the <code>area_based_llai SUBTYPE</code> overlap_splice_area that is optionally specified by an associated <code>product_that has a product_related_product_category whose.name attribute is 'document'.</code>

The allowed_repeat_pattern attribute of the area_based_llai SUBTYPE over-lap_splice_area that specifies the number of allowed repeated patterns is specified by the associated property definition with an associated count measure.

The overlap_direction attribute of the area_based_llai SUBTYPE overlap_splice_area that specifies the direction the overlap of the splice has been laid is specified by the associated property definition with an associated direction.

The stagger_distance attribute of the area_based_llai SUBTYPE overlap_splice_area that specifies the measureable distance of the staggering between overlap splices is specified by the associated property_definition whose .description attribute is set to 'stagger distance' with an associated length measure with unit.

The overlap_width attribute of the area_based_llai SUBTYPE overlap_splice_area that specifies the measureable distance of the width of an overlap splice is specified by the associated property_definition whose .description attribute is set to 'overlap width' with an associated length_measure_with_unit.

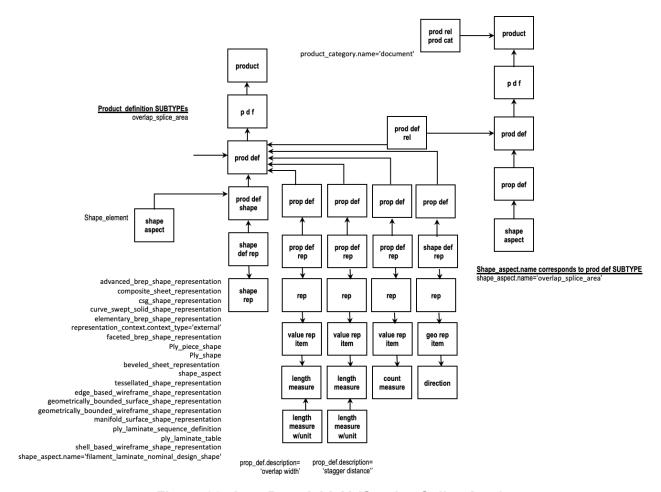


Figure 36: Area Based LLAI (Overlap Splice Area)

4.6 User Defined

The <code>shape_for_user_defined_llai</code> attribute of the <code>user_defined_llai</code> that identifies the type of object for the <code>point_based_llai</code> are specified by the allowable <code>shape_representation</code> SUBTYPES shown in Figure 37: User Defined LLAI.

The user_defined_location_for_llai attribute of the user_defined_llai that optionally identifies the location of the user_defined_llai is specified by the associated shape_aspect that is a Shape element.

The user_defined_llai_specification attribute of the user_defined_llai is a specific type of specification document that is optionally specified by an associated product that has a product related product category whose .name attribute is 'document'.

The user_defined_llai_type attribute of the user_defined_llai is a text string contained in the product_definition.description attribute that is used to describe the LLAI type defined by the user.

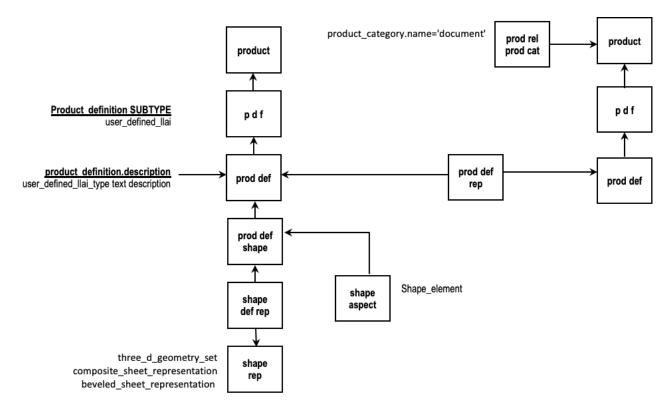


Figure 37: User Defined LLAI

5 Geometric Founding of Composite Constituent Product Definitions

The simplest case for composite constituent product definitions is when all product definitions use the same representation_context. No transformations are required for the simplest case. This applies to a Laminate Table subtype and to any Ply or Composite Constituent shape representations.

This is by far the most frequently instantiated case.

5.1 Referenced Shape in an Assembly with Additional Laminate Table Representation

Figure 38 represents the case where the laminate table subtype is founded with respect to the component/detail within an assembly. Note that it is not required for the component/detail be in an assembly, and that the laminate table subtype could also be related to the assembly.

This is the second most frequently instantiated case.

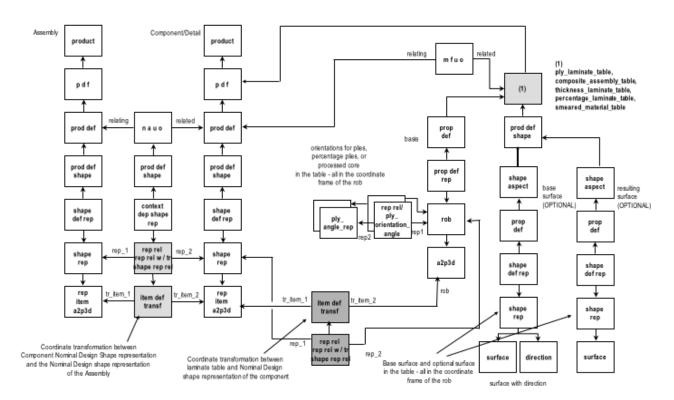


Figure 38: Referenced Shape in an Assembly with Additional Laminate Table Representation - Most General Geometric Founding Case

NOTE: See Annex A for the abbreviations used in Figure 38.

5.2 Founding of Ply Subtypes and Composite Constituents with Respect to a Laminate Table subtype – the Most General Case

The Ply shape subtypes and Composite Constituent shapes listed in Table 3 represent the different types of shape indicated on the right – hand side of Figure 39. Any of these shapes may be founded with respect to each other, or with respect to the Laminate Table subtype that they are a member of

This is a rarely instantiated case included for completeness.

Laid Ply Shape
Flat Pattern Ply Shape
Projected Ply Shape – Surface Ply Shape
Projected Ply Shape – View Ply Shape
Processed Core Shape
Filament Laminate Shape
Ply Laminate Shape
Composite Assembly Shape

Table 3: Ply Subtypes and Composite Constituents

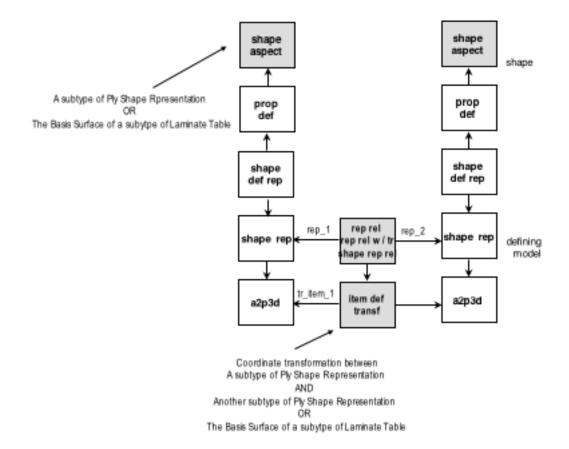


Figure 39: Founding of Ply and Composite Constituent Shapes - Most General Case

NOTE: See Annex A for the abbreviations used in Figure 39.

Annex A Abbreviations used in Instantiation Diagrams

Entity Type
axis2_placement_3d
beveled_sheet_representation
composite_assembly_sequence_definition
composite_sheet_representation
composite_assembly_table
fea_material_property_representation
fea_material_property_representation_item
flat_pattern_ply_representation_relationship
geometrically_bounded_surface_shape_representation
geometric_representation_item
geometric_set
item_defined_transformation
length_measure
length_measure_with_unit
make_from_usage_occurrence
mass_measure
material_property
material_property_representation
measure_representation_item
manifold_surface_shape_representation
next_assembly_usage_occurrence
product_defintion_formation
percentage_laminate_table
percentage_ply_definition
plane_angle_measure_with_unit
ply_angle_representation
ply_laminate_sequence_definition
ply_laminate_table
product_defintion

Abbreviation	Entity Type
prod def with associated documents	product_definition_with_associated_documents
prod rel prod cat	product_related_product_category
prop def	property_definition
prop def rep	property_definition_representation
ratio meas	ratio_measure
rep	representation
rep item	representation_item
rep rel	representation_relationship
rep rel w/ tr rep rel with transf	representation_relationship_with_transformation
rob	reinforcement_orientation_basis
shape asp rel	shape_aspect_relationship
shape def rep	shape_definition_representation
shape rep	shape_representation
shape rep rel	shape_representation_relationship
smeared material definition	smeared_material_definition
thickness lam table	thickness_laminate_table

Annex B Availability of Implementation Schemas

B.1 AP242 Edition 2

The long form EXPRESS schema for the first edition of AP242 (2019) can be retrieved from:

• https://www.mbx-if.org/home/wp-content/up-loads/2024/07/ap242ed2 mim If v1.101.zip

B.2 AP242 Edition 3

The long form EXPRESS schema for the third edition of AP242 (2022) can be retrieved from:

• https://www.mbx-if.org/home/wp-content/up-loads/2024/07/ap242ed3 mim If v1.152.zip

B.3 AP242 Edition 4

The long form EXPRESS schema for the fourth edition of AP242 (2025) can be retrieved from:

https://standards.iso.org/iso/ts/10303/-442/ed-7/tech/express/mim lf.exp