
Recommended Practices
for

Persistent IDs for Design Iteration and Downstream
Exchange

Release 1.00

November 28, 2023

CAx-IF
Jochen Boy
PROSTEP AG
jochen.boy@prostep.com

Robert Lipman
NIST
robert.lipman@nist.gov

Phil Rosché
ACCR, LLC.
phil.rosche@accr-llc.com

Technical
Asa Trainer
Consultant
agtrainer@comcast.net

Thomas Thurman
Consultant
thomas.r.thurman@imonmail.com

© CAx Interoperabiltiy Forum

Table of Contents

mailto:jochen.boy@prostep.com
mailto:robert.lipman@nist.gov
mailto:phil.rosche@accr-llc.com

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 2

Acknowledgements..3
1 Introduction...5

1.1 Design Iteration ... 5
1.2 Downstream Exchange ... 5
1.3 Maintenance of this Document..6

2 Scope...6
3 Document Identification...6
4 Persistent IDs..7

4.1 Formulation of Identifiers (UUIDs)...7
4.2 IDs in STEP...8

5 Express Diagrams..20
Availability of Implementation Schemas..28

A.1 AP242 Edition 1...28
A.2 AP242 Edition 2...28
A.3 AP242 Edition 3...28

List of Figures
Figure 1: EXPRESS Entities for Persistent IDs..16
Figure 2: UUID Attribute Specific Schema Elements..21
Figure 3: UUID Tree Specific Schema Elements..22
Figure 4: Entity Identifier for Product ..23
Figure 5: Entity Identifiers for PMI .. 24
Figure 6: Entity Identifier for Topology/Geometry...25
Figure 7: Entity Identifier for Supplemental Geometry..26
Figure 8: Entity Identifier for UDA...27

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 3

Document History
This document is a new CAx-IF Recommended Practice and adds new constructs.

Release Date Change
0.1 2018-09-26 Initial release
0.2 2019-09-05 Rewritten to support either Part 21 Data Section (Attribute) approach

and Part 21 E3 Anchor Section approach
0.3 2019-12-27 Added instance diagrams; limited Anchor Section discussion to refer to

a future edition of the document
0.4 2020-01-14 Editorial revision
0.5 2020-05-28 Updated instantiation diagrams (Figures 2, 4, 5, 6)
0.6 2022-12-29 Updated to include UUID_ATTRIBUTE schema, versioning

requirements, and iterative loading of imported data with UUIDs to
emphasize the design iteration use case rather than the downstream-
use use case;

0.7 2023-01-25 Additional tweaks before pre-release reviews including updated
diagrams (Figures 2 through 7). Draft 0.7 out for review.

0.8 2023-02-01 Updated Mikael’s information; Draft 0.8 out for review
0.9 2023-02-03 Minor changes to clarify use of UUID_attribute subtypes rather than

abstract UUID_attribute supertype; Draft 0.9 out for CAx review
0.91 2023-05-18 Replaced all references to “GUID” with “UUID”. This is based on ad

hoc agreement with DMSC who are replacing “QPID” with “UUID” as
well in QIF v4.0 (confirm this version with Larry or Curtis).
Add highlights to the subtypes in section 4.2.2 to identify those subtypes
that will limit scope and be the focus for this Rec Prac and the R52J
and later Test Cases that reference it.
Allow the publishing of UUIDs in either the Data Section form or the
Anchor Section form. Either form is valid and post-processors should
be able to read either type.

0.92 2023-06-07 Updated schema to push UUID_ATTRIBUTE under the Merkle tree;
see Sections 4.2.2 and 5. Initial instantiation model is very similar to
version 0.9 as the UUID_ATTRIBUTE inherits the ‘uuid’ identifier from
uuid_leaf_node that has no other mandatory attributes.

0.93 2023-06-08 Replaced Figures 2 and 3. Changed P21 snippet in clause 4.2.1 to
Example 1. Corrected record #1 in Example 1. Added notes to
uuid_leaf_node, uuid_root_node, uuid_internal_node.

0.94 2023-06-28 Replaced Figures 2 through 8. Changed p21 snippet in Example 1.
Updated EXPRESS in Clause 4.2.2: uuid_attribute_select,
uuid_relationship_role,uuid_attribute, hash_based_v5_uuid_attribute,
uuid_tree_node, uuid_leaf_node, uuid_internal_node, uuid_root_node,
and uuid_context_role. Removed 4.4.2.1 id_attribute as we are no
longer including id_attribute between uuid_attribute and the target.
Updated Technical Authors info. Updated notes on Figures 4 through
8.Added link to trial schema in Annex A.

0.95 2023-11-20 Replaced Figures 2 and 3. Changed uuid_attribute.identified_item to:
LIST [1:?] OF UNIQUE LIST[1:?] OF UNIQUE uuid_attribute_select.
Note that Figure 2 includes a text note to this effect. Replaced
uuid_leaf_node.data with a reference to uuid_attribute_select. Updated
specification of file identification.

1.00 2023-11-28 All current changes accepted; DRAFT status changed to Released

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 4

Acknowledgements

The authors also wish to thank Mr. Mikael Hedlind, Sandvik, Sweden, for his input on
requirements for data exchange between CAD systems for design iteration and his
development of sample test models for discussion on the design iteration exchange use case.
Portions of this report were prepared by Thomas Thurman dba TRThurman Consuling using
Federal funds under Award No. 70NANB22H217 from the Natonal Ins6tute of Standards and
Technology (NIST), U.S. Department of Commerce. The statements, findings, conclusions,
and recommenda6ons are those of the author(s) and do not necessarily reflect the views of
NIST or the U.S. Department of Commerce.

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 5

1 Introduction
Research into mechanisms for maintaining traceability of engineering product data during
exchange has concluded that the introduction and tracking of persistent IDs in that product
data are feasible. Achieving traceability of individual data elements during state changes in
product design and product development process can provide immediate practical benefits for
several use cases. In this Recommended Practices document, we will focus on two such use
cases – Design Iteration and Downstream Exchange. Review and discussion by CAx-IF at the
April 2019 meeting, concluded on limiting the testing scope to Downstream Exchange. Design
Iteration will be covered in a future version. After limited participation for the existing
Downstream-use use case in 2020 and 2021 test rounds, and increasing interest in the Design
Iteration use case, a discussion at the September 2022 CAx-IF meeting concluded that focus
should shift to the latter use case.

1.1 Design Iteration
A significant problem in design in terms of efficiency, is the difficulty in referencing shared data
between team members (teaming partners or OEMs and their suppliers) during design
iteration. Once a product model recipient consumes a source model into their CAD system
and references product model entities from that source model in their design, they become
locked into that instance of the external data. When subsequent versions of that source data
are received and consumed again, re-mapping the references by hand, to maintain
associativity between the now updated source data and the existing target design data, is
challenging at best and nearly impossible for any but the most trivial of models.
Over the years, several major CAD vendors as well as at least one independent interoperability
vendor, have implemented the ability to perform this associative mapping and update process
automatically (Reference PTC’s “Associative Topology Bus” (patent), NX’s “Associative
Update”, Dassault Systemes’ “Topological Naming”, Integration Guard, etc.). These
implementations have been successful, to a greater or lesser extent, using customized direct
translation methods or within the boundaries of the individual vendor’s exchange ecosystem.
Implementation across system boundaries poses challenges including differences between
systems in how and when entities are modified during design changes as well as differences
in how each CAD system identifies model elements and the permanence of the identifiers for
elements during change. For example, some systems may transform a geometric entity
internally while maintaining its identifier while others may simply remove and replace the entity
and update its own internal references on the fly. Another challenge is subtle differences
between mathematical approaches to entity modeling in each CAD system and the impact
those mathematical differences have on how entities are mapped. A well-known example is
the modeling of hole features where some systems model the hole as a single cylindrical
surface and other map the hole as two half cylinders. This example of a one-to-many surface
mapping requires solid bookkeeping of entity identifiers by the receiving system.
In short, the ability to retain associativity between source feature, geometry, topology, and or
attribute data and similar target data that may have dependencies on (references to) those
source elements are key requirement for rapid iteration between product versions, thus
improving design efficiency and reducing product development cost.

1.2 Downstream Exchange
Passing of design data to downstream systems has similar needs to maintain associative
references between, for example, manufacturing tool paths and the model entities they are
derived from, or dimensional tolerances as planned and measured in metrology systems and
those same dimensional tolerances as defined in the original design systems where the models
were created. In addition to the challenges of controlling and managing change in downstream
systems based on model state change in designs, there is a second and perhaps more
burdensome requirement for downstream consumption of model data and that is traceability.
Traceability is necessary from the original system of creation of data through all its uses and

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 6

throughout its lifecycle in order to follow potential faults to their source - either design,
manufacture, material, or process. This traceability is a necessary and required forensic tool
to be used in legal proceedings and technical investigations where complex product or process
failures may have resulted in injury or death. In particular, the manufacturing and metrology
communities have long had procedures in place to tag and maintain identification of products
and their components, constituent entities, and attributes, to maintain this traceability and
ensure their ability to isolate and identify any suspect system characteristics or entities in the
event of failure. The ability to rapidly trace through suspect systems may be critical to quickly
rectifying dangerous problems in product designs or product development processes.

1.3 Maintenance of this Document
This document will be maintained by the CAx-IF and will cover the Part 21 based
implementations of persistent IDs. In the current version, this document will focus on the
design iteration use case. In a future version, the document will return to refocus on the
metrology use case.

2 Scope
The following are within the scope of this document:

 The generation and use of Universally Unique Identifiers (UUIDs) (see Section 4 below)
for maintaining associativity of entities in iterative design.

 The generation and use of Universally Unique Identifiers (UUIDs) (see Section 4 below)
for maintaining associativity of entities for traceability for downstream uses of the
model.

 The use of Part 21 Data Section or Part 21 Ed 3 Anchor Section for assigning UUIDs
either on initial publication of the STEP document or after the original publishing of the
STEP document should be supported.

3 Document Identification
For validation purposes, STEP processors shall state which Recommended Practice
document and version have been used in the creation of the STEP file. This will not only
indicate what information a consumer can expect to find in the file, but even more important
where to find it in the file.
This shall be done by adding a pre-defined ID string to the description attribute of the
file_description entity in the STEP file header, which is a list of strings. The ID string
consists of four values delimitated by a triple dash (‘---‘). The values are:
Document Type---Document Name---Document Version---Publication Date

The string corresponding to this version of this document is:
CAx-IF Rec.Pracs.---Persistent IDs---1.00---2023-11-28

It will appear in a STEP file as follows:
FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.---Persistent IDs---1.00---2023-
11-28',),'2;1');

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 7

4 Persistent IDs
A mechanism for generating uniformly consistent, cross-application entity IDs is required for
the above processes to work. These IDs need to be unique to prevent clashes between entity
identifiers. In the issue summary for ISO Jira Task BS10303-3834 (formerly Bugzilla #5901)
written by Thomas Thurman (see also BRUTUS #23), the scope of such uniqueness was
suggested as only being required within the context of a specific product. This might be
considered sufficient if only the first use case – design iteration – was required. In the context
of the second use case, however, particularly the metrology use case, persistent (permanent),
universally unique identifiers are necessary and need to be applied to product (as well as
product effectivity, i.e., serialized product artifacts, if they exist), and to individual semantic
PMI entities in the product.

4.1 Formulation of Identifiers (UUIDs)
Fortunately, persistent, universally unique identifiers have been in use in the information
technology domain for a long time. Such a ‘universally unique identifier’ (UUID) is a 128-bit
number used to identify information in computer systems, e.g., operating systems, databases,
and communications processes. The term ‘globally unique identifier’ (GUID) is sometimes also
used. UUIDs have been standardized by the Open Software Foundation (OSF) and are
documented as part of ISO/IEC 11578:1996 "Information technology – Open Systems
Interconnection – Remote Procedure Call (RPC)" and more recently in ITU-T Rec. X.667 |
ISO/IEC 9834-8:2005. Most computing platforms provide convenient support for generating
them, and for parsing their textual representation. More detail about UUIDs can be found on
Wikipedia. Within the engineering domain, such UUIDs or GUIDs are already in place and
being used in the Industry Foundation Classes (IFC) format of the Building Information Model
(BIM) and in the Quality Information Framework (QIF) standard for the Metrology domain. A
recent agreement has been reached to standardize the nomenclature to UUID in this STEP
recommended Practice as well as the latest release of DMSC’s QIF v4.0 release.
In the above standard there are 5 possible versions of UUIDs:

 Version 1 UUIDs are generated from a time and a node id (usually the MAC address),
 Version 2 UUIDs are generated from an identifier (usually a group or user id), time, and

a node id,
 Versions 3 and 5 produce deterministic UUIDs generated by hashing a namespace

identifier and name,
 Version 4 UUIDs are generated using a random or pseudo-random number.

Currently, the QIF standard suggests the use of Version 4 UUIDs, i.e., via random number
seed. Several tools are generating UUIDs using this UUID Version. Based on research, there
is some desirability to be able to consistently reproduce a UUID from some namespace and
name data. Versions 3 and 5 allow this but the algorithm of Version 3 has been deprecated in
favor of Version 5. Though there has been some discussion of registering a namespace
specifically for these engineering information exchange use cases, and the namespace
hierarchy might include the name and version of the generating preprocessor, no definitive
plans have been put in place. The namestring data for the seed to generate this UUID version
might be a fully qualified path from the product identifier to the entity in question. See the
example below.
A version 5 UUID could be constructed, for example, from:

– A pre-defined namespace: uuid.NAMESPACE_DNS
• For example: UUID('6ba7b810-9dad-11d1-80b4-00c04fd430c8')

– Model Identification String (SHA-1 hash of string) composed of
Filename: “nist_ftc_06_asme1_nx900_rd.prt”

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de
https://www.cax-if.de/secure/caesar/brutus/viewissue.php?raID=23
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
http://www.buildingsmart-tech.org/specifications/ifc-overview
http://qifstandards.org/
http://www.buildingsmart-tech.org/specifications/ifc-overview

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 8

Type: “PMI Feature Control Frame”
Persistent ID: “ID 879819”

The function uuid.uuid5 with arguments (uuid.NAMESPACE_DNS,
"nist_ftc_06_asme1_nx900_rd.prt PMI Feature Control Frame - ID 879819")
renders UUID('491b0d21-fc8e-50d0-874f-6b7f5a95c47a').
It is important to note that, if all hash string elements are the same, the UUID generator will
generate the same UUID again.
Model Identification String (SHA-1 Hash String) is the responsibility of the owner (creator)
application. The creator application should concatenate string elements including the
following:

 a unique part name or part number,
 a part instance serial number (if it exists),
 an entity type or full path from the product to the individual entity, and
 an internally maintained, unique persistent entity ID.

In the remainder of this recommended practice document, we will refer to the term UUID when
describing these unique identifiers.

4.2 IDs in STEP
There are two valid approaches to storing UUIDs in STEP. The first is via an internal identifier
within the context of the Part 21 data section. This method was originally suggested by data
modelers and may make sense for the original publishers of STEP from the source CAx system
and will be described in Section 4.2.2 below. The second is the storing of such identifiers not
in the data section but rather within the Part 21 Edition 3 Anchor Section. This second method
was once put forward primarily as an alternative method to add identifiers to a STEP file for
newly appended data after its original publication or to allow addition of identifiers to legacy
STEP data. Either of the above methods – Data Section or Anchor Section – are considered
valid for initial publication by the source preprocessor or for appending data after initial
publication.

4.2.1 Model Versioning to Support Iteration of Product Design
To support the design iteration use case, some mechanism is needed, at the application level,
to identify the change of state of the model from one iteration to the next. This is typically done
by checking the model out of a PLM system, performing some modification on the design
model, and checking that next model iteration back into the PLM system. This requirement
also applies between revisions of the model, i.e., when major changes to the design are
published for use within the extended enterprise. In either case (iteration or revision), a
counter is incremented to identify the change in state of the model. Often this counter
information is carried not only within the PLM system, but also within the model itself. In order
to support iterative design and update during STEP exchanges, this iteration flag, i.e., the
revision/version counter, also needs to be injected into the STEP file when created and also
needs to be captured by any consuming STEP postprocessor. The format of this iteration flag
is a string in form of <revision letter>.<version number> or <revision letter>-<version number>,
e.g. A.1, A.2, B.1, B.2, etc, or A-1, A-2, B-1, B-2, etc. The product_definition and
product_definition_formation entities are used for this purpose. An example of the
connection between these two entities and a UUID_attribute entity (Section 4.2.2 below)
is given in example 1 below:

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 9

Example 1
#1=v5_uuid_attribute (‘36 character uuid string’,(#2));
/*identified_item is the second attribute in the attribute
list */
#2=product_definition('','',#3,#4);
#3=product_definition_formation('A.1','',#5);
#4=product_definition_context(...);
#5=product(....);

4.2.2 Persistent ID (UUID) Entity Identification
The EXPRESS entities and attributes used to support the requirements of UUID entity
identification and relationships between them are illustrated below (Figure 1, also refer to the
schema diagram in Figure 2). They are proposed to be included in AP242 Edition 4. In case
of any discrepancies between these test schema entries and the published AP242 Edition 3
should be brought to the attention of the authors.
Note that the full list of types for id_attribute_select and identification_item are given
below, only those shown in bold below will be used for the purposes of entity identification
for persistent ID usage.

TYPE id_attribute_select = SELECT
(action,
address,
application_context,
ascribable_state_relationship,
dimensional_size, [dimensional_size_with_path]
geometric_tolerance,
group,
organizational_project,
product_category,
property_definition,
representation, [advanced_brep_shape_representation,

shape_representation,]
shape_aspect,
shape_aspect_relationship, [dimensional_location]
topological_representation_item); [advanced_face,

closed_shell, open_shell]
END_TYPE;

TYPE identification_item = SELECT
(

action,
application_context,
characterized_object,
characterized_object_relationship,
context_dependent_shape_representation,
derived_unit,
dimension_related_tolerance_zone_element,
dimensional_characteristic_representation,

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 10

dimensional_location,
founded_item,
geometric_tolerance_auxiliary_classification,
geometric_tolerance_relationship,
gps_filter,
gps_filtration_specification,
invisibility,
item_identified_representation_usage,
limits_and_fits,
measure_qualification,
measure_with_unit,
named_unit,
plus_minus_tolerance,
representation_item,
representation_item_relationship,
runout_zone_orientation,
tolerance_value,
tolerance_zone_definition,
tolerance_zone_form,

action_directive,
action_directive_relationship,
action_method,
action_method_relationship,
action_property,
action_property_representation,
action_relationship,
address,
alternate_product_relationship,
alternative_solution_relationship,
analysis_assignment,
analysis_representation_context,
applied_action_assignment,
applied_action_method_assignment,
applied_action_request_assignment,
applied_approval_assignment,
applied_certification_assignment,
applied_classification_assignment_relationship,
applied_contract_assignment,
applied_description_text_assignment,
applied_description_text_assignment_relationship,
applied_document_reference,
applied_document_usage_constraint_assignment,
applied_effectivity_assignment,
applied_event_occurrence_assignment,
applied_external_identification_assignment,
applied_external_identification_assignment_relationship,
applied_identification_assignment,
applied_ineffectivity_assignment,
applied_organization_assignment,
applied_organizational_project_assignment,
applied_person_and_organization_assignment,
applied_security_classification_assignment,

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 11

applied_time_interval_assignment,
applied_usage_right,
approval,
approval_relationship,
approval_status,
ascribable_state,
ascribable_state_relationship,
assembly_component_usage,
assembly_component_usage_substitute,
assignment_object_relationship,
breakdown_element_realization,
breakdown_of,
certification,
change_group,
characterized_class,
class,
class_system,
configuration_effectivity,
configuration_item,
configuration_item_relationship,
contract,
contract_relationship,
date_and_time_assignment,
date_assignment,
degenerate_pcurve,
dimensional_size,
dimensional_size_with_path,
directed_action_assignment,
document_file,
document_relationship,
document_type,
draughting_model,
effectivity,
effectivity_relationship,
envelope,
envelope_relationship,
evaluated_characteristic,
event_occurrence,
event_occurrence_relationship,
evidence,
exclusive_product_concept_feature_category,
executed_action,
general_property,
general_property_relationship,
generic_property_relationship,
group,
group_relationship,
identification_assignment_relationship,
information_right,
information_usage_right,
interface_connection,
interface_connector_as_planned,
interface_connector_as_realized,

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 12

interface_connector_definition,
interface_connector_design,
interface_connector_occurrence,
interface_connector_version,
interface_definition_connection,
interface_definition_for,
interface_specification_definition,
interface_specification_version,
link_motion_relationship,
material_designation,
material_designation_characterization,
measure_representation_item,
mechanical_design_geometric_presentation_representation,
message_relationship,
organization,
organization_relationship,
organizational_address,
organizational_project,
organizational_project_relationship,
package_product_concept_feature,
person,
person_and_organization,
person_and_organization_address,
point_on_surface,
presentation_area,
process_operation,
process_plan,
product,
product_category,
product_class,
product_concept,
product_concept_context,
product_concept_feature,
product_concept_feature_category,
product_concept_relationship,
product_definition,
product_definition_formation,
product_definition_formation_relationship,
product_definition_occurrence,
product_definition_occurrence_reference,
product_definition_relationship,
product_definition_usage,
product_definition_usage_relationship,
product_group,
product_group_membership,
product_group_relationship,
product_identification,
product_process_plan,
product_relationship,
property_definition,
property_definition_relationship,
property_definition_representation,

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 13

representation,
representation_context,
representation_relationship,
requirement_assignment,
requirement_for_action_resource,
requirement_source,
retention,
rule_set,
satisfies_requirement,
security_classification,
security_classification_level,
shape_aspect,
shape_aspect_relationship,
shape_feature_definition,
shape_feature_definition_relationship,
shape_representation,
state_definition_to_state_assignment_relationship,
state_observed,
state_observed_assignment,
state_observed_relationship,
state_type,
state_type_assignment,
state_type_relationship,
structured_message,
time_interval,
time_interval_relationship,
usage_association,
validation,
verification,
verification_relationship,
versioned_action_request,
versioned_action_request_relationship);

END_TYPE;

ENTITY id_attribute;
attribute_value : identifier;
identified_item : id_attribute_select;

END_ENTITY;

TYPE uuid_attribute_select = SELECT
(id_attribute_select,
identification_item);

END_TYPE;

TYPE uuid = STRING (36) FIXED;
END_TYPE;

TYPE uuid_relationship_role = ENUMERATION OF
(SUPERSEDES,
MERGE,
SPLIT,

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 14

DERIVE_FROM,
SAME_AS,
SIMILAR_TO);

END_TYPE;

ENTITY uuid_attribute
ABSTRACT SUPERTYPE OF(ONEOF(
v5_uuid_attribute,
v4_uuid_attribute)
ANDOR uuid_attribute_with_approximate_geometric_location)
identifier : uuid;
identified_item : LIST [1 : ?] OF UNIQUE LIST [1:?] OF UNIQUE

uuid_attribute_select;
UNIQUE
UR1 : identifier;

END_ENTITY;

ENTITY v5_uuid_attribute
SUBTYPE OF(uuid_attribute);

END_ENTITY;

ENTITY v4_uuid_attribute
SUBTYPE OF(uuid_attribute);

END_ENTITY;
ENTITY hash_based_v5_uuid_attribute
SUBTYPE OF(v5_uuid_attribute);
hash_function : STRING;

WHERE
WR1 : hash_function <> '';

END_ENTITY;

ENTITY uuid_attribute_with_approximate_location
SUBTYPE OF(uuid_attribute);
location_representation : shape_representation;
approximate_location : cartesian_point;

WHERE
WR1 : location_representation IN

using_representations(approximate_location);
END_ENTITY;

*)
ENTITY uuid_relationship;

identifier : uuid;
uuid_1 : uuid;
uuid_2 : uuid;
role : uuid_relationship_role;
tree_root : OPTIONAL uuid_tree_root;

UNIQUE
UR1 : identifier;

WHERE
WR1 : uuid_1 <> uuid_2;;
WR2 : uuid_1 <> identifier;;

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 15

WR3 : identifier <> uuid_2;;
wr4 : NOT ((parent_child) = role) OR EXISTS(tree_root);

END_ENTITY;

ENTITY uuid_provenance;
identifier : uuid;
content : LIST [1:?] OF UNIQUE uuid_relationship;

UNIQUE
UR1 : identifier;

END_ENTITY;

ENTITY uuid_tree_node
ABSTRACT
SUPERTYPE OF (ONEOF(uuid_leaf_node, uuid_internal_node));
identifier : uuid;
node_2 : OPTIONAL uuid_tree_node;
node_1 : OPTIONAL uuid_tree_node;

WHERE
WR1 : node_1 <> node_2;

END_ENTITY;

ENTITY uuid_leaf_node
SUBTYPE OF(uuid_tree_node);
data : uuid_attribute_select;
DERIVE
leaf_operand : STRING (1) FIXED := '0';

WHERE
WR1 : NOT (EXISTS (node_1) OR EXISTS(node_2));
WR2 :

(SIZEOF(USEDIN(SELF,'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.
UUID_TREE_NODE.NODE_1')) = 1) AND
(SIZEOF(USEDIN(SELF,'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.
UUID_TREE_NODE.NODE_2')) = 1); END_ENTITY;

ENTITY uuid_internal_node
SUBTYPE OF(uuid_tree_node);
DERIVE
internal_operand : STRING (1) FIXED := '1';

WHERE
WR1 : EXISTS(node_1) AND EXISTS(node_2);
WR2 : (SIZEOF(USEDIN(SELF,

'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.UUID_TREE_NODE.NODE_
1'))=1) AND (SIZEOF(USEDIN(SELF,
'AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF.UUID_TREE_NODE.NODE_
2')) = 1);
END_ENTITY;

ENTITY uuid_root_node
SUBTYPE OF(uuid_internal_node);
hash_function : STRING;

DERIVE
root_operand : STRING := '1';

WHERE
WR1 : SIZEOF(USED_IN(UUID_SCHEMA.UUID.TREE_NODE.NODE_1)) = 0;

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 16

WR2 : SIZEOF(USED_IN(UUID_SCHEMA.UUID.TREE_NODE.NODE_2)) = 0;
WR3 : EXISTS(SELF\uuid_tree_node.node_1) AND

EXISTS(SELF\uuid_tree_node.node_2);
END_ENTITY;

(
ENTITY uuid_context_role;

identifier : uuid;
role : STRING; UNIQUE UR1 : identifier;

WHERE
WR1 : role <> ''; END_ENTITY;

Figure 1: EXPRESS Entities for Persistent IDs

4.2.2.1 UUID_ATTRIBUTE
The uuid_attribute entity is an extension from the id_attribute entity that represents
UUID-specific identifier information. The uuid_attribute is abstract and only subtype of
uuid_attribute must be populated, i.e. v5_uuid_attribute and
v4_uuid_attribute, as appropriate. A uuid_attribute associates a UUID with an
ordered collection of product data items. Only items specified by
id_attribute_select, or those specified by identification_item, shall be specified by
uuid_attribute. . In the first trial, the ordered collection will contain one item.
As a follow-on trial, the path from shape_aspect to gisu to advanced_face will be
exchanged.
As a further follow-on trial, the merkle tree (shape_aspect...advanced_face,
shape_aspect...geometric_tolerance, shape_aspect...presentation geometry)
will be exchanged.

4.2.2.2 V5_UUID_ATTRIBUTE
The v5_uuid_attribute entity is a SUBTYPE OF uuid_attribute, and inherits the attributes
from that ENTITY. A v5_uuid_attribute is a uuid_attribute that provides a UUID that
conforms to version 5 of the relevant rfc. Version 5 UUIDs are generated based on a known
namespace identifier and a name string that can be relied on between iterations of the product.
The names string nor the namespace are provided. They are left to the implementor to
manage internally.

4.2.2.3 HASH_BASED_V5_UUID_ATTRIBUTE
A hash_based_v5_uuid_attribute entity is a v5_uuid_attribute that provides a UUID
that is a hash of the data items specified in the identified_items list attribute in the SUPERTYPE
uuid_attribute. The hash function name shall be provided, but may be an empty string.

4.2.2.4 V4_UUID_ATTRIBUTE
The v4_uuid_attribute entity represents UUID identifier information. This entity collects
the value of one of the UUID subtypes and the STEP entity that that UUID is assigned to. A

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 17

uuid_attribute associates a UUID with an ordered collection of product data items. A
v4_uuid_attribute is a uuid_attribute that provides a UUID that conforms to version
4 of the relevant rfc. Version 4 UUIDs are generated randomly and cannot be relied on
between iterations of the product.

4.2.2.5 UUID_ATTRIBUTE_WITH_APPROXIMATE_LOCATION
The uuid_attribute_with_approximate_location is a subtype of uuid_attribute
that provides an approximate location in cartesian space of an item or items that has a UUID
assigned.

4.2.2.6 UUID_RELATIONSHIP
The uuid_relationship relates two UUIDs and provides a role for that relationship.

4.2.2.7 UUID_RELATIONSHIP_ROLE
The uuid_relationship_role enumerates the permitted roles associated with a
uuid_relationship. The allowed roles are SUPERSEDES, MERGE, SPLIT,
DERIVE_FROM, SAME_AS, and SIMILAR_TO.

4.2.2.8 UUID_PROVENANCE
The uuid_provenance is the specification of a sequence of uuid_relationships that
provides a historical record of those relationships. The sequence is a simple list form.

4.2.2.9 UUID_CONTEXT_ROLE
The uuid_context_role associates a role (non-empty string value) to a UUID.
Preprocessors are recommended to populate this string value as “design_iteration” or
“downstream_manufacturing”, as appropriate.

4.2.2.10 uuid_tree_node
A uuid_tree_node is one of (uuid_leaf_node, uuid_internal_node, uuid_root_node). There are
two optional attributes node_1 and node_2 that specify lower level nodes. A uuid_tree_node
is ABSTRACT and shall not be populated by itself.

4.2.2.11 uuid_leaf_node
A uuid_leaf_node is a subtype of uuid_tree_node that is a leaf node in a tree. A uuid_leaf_node
specifies a uuid_attribute as its data attribute. A uuid_leaf_node shall be referenced by two
uuid_tree_nodes (but not itself or another uuid_leaf_node).

4.2.2.12 uuid_internal_node
A uuid_internal_node is a subtype of uuid_tree_node that is internal to the tree. It may be
referenced by one uuid node (that is not a uuid_leaf_node) and shall reference two lower level
nodes.

Note: For initial trial the merkle tree is out of scope. No tree entities need be populated.

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 18

4.2.2.13 uuid_root_node
A uuid_root_node is a subtype of uuid_tree_node that is the root node in a tree. It shall not be
referenced by other nodes and shall reference two lower level nodes.The uuid_root_node
provides the hash function for the tree.

4.2.3 UUID PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS

Preprocessor Recommendations: All preprocessors must generate UUIDs for each entity
that they wish to permanently identify.
Each Product entity must have a UUID assigned. Each Semantic PMI entity -- dimensions,
tolerances, datum tags and targets, surface finishes, and model notes -- may have a UUID
assigned. All topological entities such as faces, edges, and vertices as well as supplemental
geometry entities that are used as reference for the above Semantic PMI entities in the pre-
processing system may have UUIDs assigned. In addition, User Defined Attributes (UDAs)
may be assigned to product, geometry, or PMI in support of the metrology use case and these
UDAs may also have UUIDs assigned.
Preprocessors must ensure that all UUIDs assigned to entities from the CAD model as
described above must be maintained and be stable from one iteration of the CAD model to the
next, i.e. an entity will retain the same UUID from model iteration to iteration, from CAD session
to session, or from a session on machine X to a session on a different machine Y as long as
the entity exists in the data. This rule applies at all levels, i.e., to Product as well as to
annotation (PMI) entities, and to associated geometry and topology or supplemental geometry
entities. When new entities are created by the CAD user, new UUIDs will be assigned to those
new entities. When entities are deleted from the model, their UUIDs must not be reused.
It is recommended that pre-processors that own the original CAD data will publish UUIDs as
described in Section 4.1 above as identifiers within the Data Section of the STEP file using the
structures described in Section 4.2.2 above. Pre-processors may, however, use the Anchor
Section method as an alternate approach.
Postprocessor Recommendations: Postprocessors must support the reading of UUIDs
whether those UUIDs are published within the Data Section or within the Anchor Section.
Postprocessors must retain incoming UUIDs for all identified geometry and topological entities,
supplemental geometry entities, PMI entities, UDA entities and product entities read.
Related Entities:
N/A

4.2.4 PREPROCESSOR AND POSTPROCESSOR RECOMMENDATIONS FOR
DESIGN ITERATION

Preprocessor Recommendations:
All preprocessors must generate UUIDs for each entity that they wish to permanently identify
and must ensure that all UUIDs assigned to entities from the CAD model as described above
must be maintained and be stable from one iteration of the CAD model to the next. (Ref –
Section 4.2.2.11 above).
All preprocessors must export versioning information as specified Section 4.2.1 above.
Postprocessor Recommendations:
Initial Import -

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 19

All postprocessors, upon first import of a STEP model, must retain incoming UUIDs for all
identified STEP entities and map UUIDs assigned to the equivalent internal CAD entities as
imported. How this mapping is handled in each postprocessing application is left to the
individual application to manage but a table of mappings should be retained for later use in
subsequent iteration.
All postprocessors, upon the first import of the STEP model, must retain in the mapping the
version information specified in Section 4.2.1 above as well as the product UUID and STEP
file name information for the model for later use in subsequent iteration.
Subsequent to postprocessing, the imported model can be used for further design including
the addition of new entities (geometry, features, datums, PMI, UDAs, process information, etc)
as long as none of the imported entities that had UUIDs assigned are modified in any
way.
The postprocessing system shall, if new content is added, create and assign UUIDs to new
entities as needed to further facilitate iterative exchange using the method described above
for preprocessors.

Subsequent Import -
Subsequent to the initial import above, a postprocessor will, when loading a new STEP file for
which an existing imported model exists in memory (i.e., that can be identified as having
matching product UUIDs and file name information), replace all existing imported entities with
the newly imported content, but will ensure that any native entities previously added will have
their references preserved (reassigned to the same imported entities). This process will allow
automated update of child references, thus preserving design intent from iteration to iteration.

Related Entities:
N/A

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 20

5 Express Diagrams
The EXPRESS entities and attributes used to support the complete requirements of entity
identification for product, PMI, topology/geometry, supplemental geometry, and UDA are
illustrated in the figures on the following pages. Note that all instances of terms in the diagrams
shown in Figures 2 through 8 below having the characters “guid” in them are now replaced
with the characters “uuid”.

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 21

Figure 2: UUID Attribute Specific Schema Elements

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 22

Figure 3: UUID Tree Specific Schema Elements

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 23

Figure 4: Entity Identifier for Product
(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 24

Figure 5: Entity Identifiers for PMI
(examples) (note – uuid_attribute must be replaced by either v5_uuid_attribute or

v4_uuid_attribute.):

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 25

Figure 6: Entity Identifier for Topology/Geometry
(examples, including shape aspect for aggregation) (note – uuid_attribute must be replaced

by either v5_uuid_attribute or v4_uuid_attribute.)

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 26

Figure 7: Entity Identifier for Supplemental Geometry
(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 27

Figure 8: Entity Identifier for UDA
(note – uuid_attribute must be replaced by either v5_uuid_attribute or v4_uuid_attribute.)

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de

CAx-IF Recommended Practices
Persistent IDs for Design Iteration and Downstream Exchange
Version 0.9, February 3, 2023

© CAx Interoperability Forum www.cax-if.de – www.cax-if.eu – www.cax-if.org 28

Availability of Implementation Schemas
A.1 AP242 Edition 1
The long form EXPRESS schema for the first edition of AP242 can be retrieved from:

 http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip

A.2 AP242 Edition 2
The long form EXPRESS schema for the second edition of AP242 can be retrieved from:

 https://www.cax-if.de/documents/ap242ed2_mim_lf_v1.101.exp

A.3 AP242 Edition 3
The long form EXPRESS schema for the third edition of AP242 can be retrieved from:

 https://www.cax-if.de/documents/ap242ed3_mim_lf_v1.152.exp

A.4 AP 242 trial schema
The long form EXPRESS schema (based on AP 242 Edition 3) to be used for this
recommended practice can be retrieved from
https://github.com/allisonfeeney/guid-data/blob/main/442_mim_lf_schema/mim_lf.exp

http://www.cax-if.org
http://www.cax-if.eu
http://www.cax-if.de
http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip
https://www.cax-if.de/documents/ap242ed2_mim_lf_v1.101.exp
https://www.cax-if.de/documents/ap242ed3_mim_lf_v1.152.exp

