

Recommended Practices for

User Defined Attributes

Release 1.4

July 20, 2015

Contacts

Jochen Boy

PROSTEP AG

Dolivostraße 11

64293 Darmstadt / Germany

jochen.boy@prostep.com

Phil Rosché

ACCR LLC.

125 King Charles Circle

Summerville, SC 29485 USA

phil.rosche@accr-llc.com

© CAx Implementor Forum

mailto:jochen.boy@prostep.com
mailto:phil.rosche@accr-llc.com

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 2
 http://www.cax-if.org/

Table of Contents

1 Introduction .. 4

2 Scope .. 4

3 Document Identification .. 4

4 Fundamental Concepts ... 5

5 Definition of the Attribute, Usage and Sets ... 5

5.1 Definition and Use of General Property .. 6

5.2 Definition of Attribute Sets .. 6

6 Specifying the Target for the Attribute .. 8

6.1 Attributes at the Part/Product Level .. 8

6.2 Attributes at Component Instances in an Assembly .. 9

6.3 Attributes at the Geometry Level .. 10

7 Definition of the Attribute Value ... 14

7.1 Descriptive / String Attribute ... 14

7.2 Value Attribute .. 15

7.3 Measure Attribute ... 16

7.4 Transfer of Meta-Data for the User Defined Attributes .. 17

8 UDA Validation Properties .. 19

9 Usage of UDA in combination with External References 22

9.1 Intermediate File Approach ... 22

9.2 Known Limitations .. 23

10 Part 21 File Examples .. 23

Annex A Availability of implementation schemas .. 24

A.1 AP214 .. 24

A.2 AP203 2nd Edition ... 24

A.3 AP242 .. 24

Annex B Measure Value Types available in AP214 and AP203e2 25

Annex C Recommendation for the Definition of Units ... 27

C.1 SI Base Unit Definitions .. 27

C.2 SI Derived Units.. 27

C.3 Derived Units whose System of Units is Unspecified .. 28

C.4 Detailed Examples of Measure Unit Definitions .. 29

C.5 Example Application of Unit Definitions to Measure Value .. 35

C.6 Measure schema errata .. 35

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 3
 http://www.cax-if.org/

List of Figures

Figure 1: Definition of an attribute name and its usage .. 6

Figure 2: Defining a group of attribute values .. 7

Figure 3: User defined attributes at the part/product level .. 8

Figure 4: User defined attribute for a simple component instance in an assembly 9

Figure 5: The use of MLRD to identify an instance deeper down in the assembly 10

Figure 6: User-Defined Attributes at the Geometry Level (Shape Representation) 12

Figure 7: User-Defined Attributes at the Geometry Level (GISU) ... 13

Figure 8: Definition of a user defined descriptive attribute ... 15

Figure 9: Definition of a user defined value attribute (INTEGER in this case) 15

Figure 10: Definition of a user defined measure attribute ... 16

Figure 11: Specification of meta-data for an attribute and one of its values 18

Figure 12: Definition of user defined Attribute Validation Properties .. 20

Figure 13: Intermediate File for External References with Part-Level UDA 22

Figure 14: Structure of the Intermediate File .. 23

Figure 15: SI Unit Definition for "Pascal".. 29

Document History

Revision Date Change

1.0 2011-10-14 Initial creation

1.1
(*)

 2012-11-27 Changed section 6.2 to use MLRD instead of SHUO

1.2
(*)

 2013-02-22 Updated document references

1.3 2014-10-09 Updated Figure 6; editorial changes for publication.

1.4 2015-07-20 Updated section 6.3 for AP242; updates section 8 with additional validation
property for measure values.

(*): Internal review versions; not published.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 4
 http://www.cax-if.org/

1 Introduction
This document specifies the recommended practices for the transfer of user defined attributes
(UDA’s) in Computer Aided Design (CAD) systems. These attributes are usually not derived
from the part itself, but are added manually by the CAD system user to supplement the model
with additional information. User defined attributes may also serve as a place to store certain
information from a native system that has no one-to-one counterpart in the target system.

User defined attributes are usually transferred as key-value pairs, where the key is given by the

name attribute of the respective representation_item that carries the value. The type of

attribute is given by the subtype of representation_item being used, in particular if it is a

measure value (e.g. a length_measure). In order to enable a round-trip conversion, it may

also be useful to transfer the name of attribute type as defined in the native system.

2 Scope
The following are within scope of this document:

 Transfer of user defined attributes as key-value pairs

 Transfer of meta-data for the attributes, such as the name of the type in the originating
system

 Definition of sets of attributes and attribute values

 Assignment of the attribute value to a part, including assembly component instances

 Assignment of the attribute value to a section of the part shape, i.e. solids or surfaces

 Definition of Validation Properties for User Defined Attributes

The following are outside of the scope of this document:

 Transfer of any kind of Validation Properties other than those directly for UDA (for Prod-
uct Manufacturing Information (PMI) Validation Properties, Assembly Validation Proper-
ties and Geometric Validation Properties, see the corresponding Recommended Practic-
es)

 Transfer of Density and Material Identification (see corresponding Recommended Prac-
tices)

 Assignment of properties to non-solid or non-surface models

 Assignment of properties to a product, document or feature, or its definition

 Definition of CAD-system specific structures for the association of UDA to geometry

3 Document Identification
For validation purposes, STEP processors shall state which Recommended Practice document
and version thereof have been used in the creation of the STEP file. This will not only indicate
what information a consumer can expect to find in the file, but even more important where to find
it in the file.

This shall be done by adding a pre-defined ID string to the description attribute of the

file_description entity in the STEP file header, which is a list of strings. The ID string con-

sists of four values delimitated by a triple dash (‘---‘). The values are:

Document Type---Document Name---Document Version---Publication Date

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 5
 http://www.cax-if.org/

The string corresponding to this version of this document is:

CAx-IF Rec.Pracs.---User Defined Attributes---1.4---2015-07-20

It will appear in a STEP file as follows:

FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.---User Defined Attributes---1.4---

2014-07-20',),'2;1');

4 Fundamental Concepts
The approach used to transfer user defined attributes is the “general property” approach intro-
duced in Part 41. It is based on the concept that an attribute (the key in a key-value pair) is de-
fined once as a placeholder, and is then used to assign the actual values to the respective target
elements as often as needed.

The main reference points in a STEP file for which such an attribute may be defined in the given
context are:

 the entire part (product_defintion)

 an instance of the part in an assembly (product_definition_relationship)

 a portion of the shape defining the part (shape_aspect)

There are a number of pre-defined property types in STEP that may be used to store a user-
defined attribute. In the context of this document, this includes:

 descriptive attributes

o name and description

 measure values

o name and value

o name, value and unit

Note: The property_definition, which is the starting point for the definition of an attribute

value, has been identified by two means in earlier (pre-0.6) drafts of this document:

 the fact that a general_property is associated with it

 the magic string ‘user defined attribute’

This was a redundant definition, since the association of a general_property alone already

conveys the intent that this is a user defined attribute, and it also considerably limited the poten-

tial offered by the use of general_property. Hence, the magic string will no longer be used.

The new section 5 will explain the details.

5 Definition of the Attribute, Usage and Sets
Even though User Defined Attributes, as the name suggests, are usually defined by the user,
they are not entirely arbitrary. There is typically a limited range of attributes, which is then as-
signed many times to the various elements or instances thereof in the model. These attributes
and their values may be extracted by other applications (PDM, downstream processes, etc.) for
further use. Sticking with the idea that a UDA is a key-value pair, the approach in STEP is to
define the ‘key’ only once and then use it to assign the applicable values to many elements in
the model.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 6
 http://www.cax-if.org/

However, many CAD systems do not handle user attributes that strictly internally. Two different
elements in the model can have two attributes with the same name, but entirely different mean-
ings. To support this concept, the recommendation in the context of the CAx-IF is to keep the 1:1

relationship between general_property and property_definition. However, the attrib-

ute name shall be used as the name attribute values of these entities.

5.1 Definition and Use of General Property

The general_property entity will define a ‘data field’ or ‘key’ for a user defined attribute. This

can then be used to assign a value to one or several elements in the model. The following rules

apply to the general_property.name:

 it carries the name of the user defined attribute

 it is unique for the (combination of) elements it is assigned to

To assign a value for this attribute:

 create a property_definition with the same name as the general_property

(this is enforced by a where rule in both AP203e2 and AP214)

 link the two together with a general_property_association with an empty string as

the name

Figure 1 below illustrates the structure needed to define a UDA. The “model element” may be
any of the options shown in section 6, and the attribute value and corresponding subtype of

representation_item may be any of the options shown in section 7 below.

Figure 1: Definition of an attribute name and its usage

Note that PDM systems may follow the original idea in STEP, and define one general_-

property which has many property_definitions associated with it. The meaning of this

is there is an attribute, which is defined once, and has many values of it assigned to various el-
ements in the model. On import, this should be resolved so that there is one UDA with that name
per model element.

5.2 Definition of Attribute Sets

User Defined Attributes can be grouped on two semantic levels: the attribute definition (and thus
all its usages) or an individual attribute value.

5.2.1 Groups of Attributes

Note that systems handling user attributes in a way that all attributes with the same name have
the same meaning may also define groups on this level. This level of grouping is listed here for
completeness. In the context of the CAx-IF, groups of attributes will always be defined on the
attribute level, see section 5.2.2 below.

To define a group of attributes in the sense that this grouping shall also be applied to all values
of the respective attributes (e.g. the calculated weight, nominal weight and actual weight of a

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 7
 http://www.cax-if.org/

part), a general_property will be created for that group, carrying the name of the group, and

relating all general_property instances which are members of the group.

The following rules apply to the general_property_relationship attribute values:

 relating_property: the general_property that defines the group of attributes

 related_property: the general_property that defines an attribute in that group

 name: ‘decomposition’

5.2.2 Groups of Attribute Values

The approach to define a group of attribute values – i.e. which apply to the specific use of the
respective attributes – is quite similar to the grouping of attributes themselves, only it will now

happen on the property_definition level.

Figure 2: Defining a group of attribute values

Note that all property_definitons – the one defining the group and all of the ones defining

the attribute values – need to reference the same model element as their definition (one of

the choices from section 6). This means that only values for the same model element can be
grouped.

The following rules apply to the property_definition_relationship attributes:

 relating_property_definition: the property_definition that defines the

group of attribute values

 related_property_definition: the property_definition that defines an at-

tribute value in that group

 name: ‘decomposition’

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 8
 http://www.cax-if.org/

6 Specifying the Target for the Attribute
User defined attributes can be attached to the geometry in a STEP file at different levels of
granularity, i.e. individual solids or surfaces, or entire parts. While all CAD systems support the
definition of attributes at the part level, only some systems can handle attributes at the level of
individual shape elements.

6.1 Attributes at the Part/Product Level

The following diagram illustrates the assignment of user defined attributes at the part/product

level. The definition of the attribute value, which links to the property_definition, is de-

scribed in section 7.

Figure 3: User defined attributes at the part/product level

Part21 Example:

#10=PRODUCT('part 1', 'part 1', '', #8);

#20=PRODUCT_DEFINITION_FORMATION('version 1', '', #10);

#30=PRODUCT_DEFINITION('design', $,#20, #9);

#40=PRODUCT_DEFINITION_SHAPE('', $, #30);

#50=SHAPE_DEFINITION_REPRESENTATION(#40, #60);

#60=SHAPE_REPRESENTATION('#60, (#895, #442, #447, #452, #889), #891);

#70=PROPERTY_DEFINITION('nominal weight', $,#30);

#80=GENERAL_PROPERTY_ASSOCIATION('', $, #90, #70);

#90=GENERAL_PROPERTY('', 'nominal weight', $);

This applies to individual parts as well as assemblies.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 9
 http://www.cax-if.org/

6.2 Attributes at Component Instances in an Assembly

If the user defined attribute shall be assigned to a specific instance of a component within an
assembly, the property needs to be attached to the assembly definition. If the instance in ques-

tion is an immediate child of the assembly node, the attribute will be attached to the NAUO:

Figure 4: User defined attribute for a simple component instance in an assembly

Part21 Example:

#10=PRODUCT('part 1','part 1','',#8);

#20=PRODUCT_DEFINITION_FORMATION('version 1','', #10);

#30=PRODUCT_DEFINITION('design',$,#20,#9);

#40=GENERAL_PROPERTY('','assembly step',$);

#110=PRODUCT('assembly 1','assembly 1','', 8);

#120=PRODUCT_DEFINITION_FORMATION('version 1','',#110);

#130=PRODUCT_DEFINITION('design',$,#120,#9);

#150=NEXT_ASSEMBLY_USAGE_OCCURRENCE('ASS1_PRT1','','Ass1:Prt1',#30,#130,'');

#160=PROPERTY_DEFINITION('assembly step',$,#150);

#170=GENERAL_PROPERTY_ASSOCIATION('',$,#40,#160);

If in the specific component instance the attribute shall be attached to is several levels down in
the assembly tree, the path through the assembly structure from the relative root node to the
targeted leaf node needs to be unambiguously identified. This is done by creating an instance of

multi_level_reference_designator (MLRD), which references a list of NAUOs. The

NAUOs are listed in an ordered manner, from top to bottom.

Note: MLRD was introduced with AP242 DIS. Before that, identification of a component instance

deep down in the assembly structure was described using specified_higher_usage_-

occurrence (SHUO). In contrast to MLRD with its simple top-down list, SHUO is defined recur-

sively. Though SHUO still is a valid alternative, it was deemed too complex to implement by most

CAD vendors. Hence, description of this approach was removed from this document.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 10
 http://www.cax-if.org/

The diagram below illustrates the use of MLRD based on the AS1 example:

Figure 5: The use of MLRD to identify an instance deeper down in the assembly

MLRD is a subtype of assembly_component_usage, just as NAUO, which means the user de-

fined attribute can be attached to it in the exact same way (see Figure 4). As the name sug-

gests, multi_level_reference_designator requires that for all NAUOs referenced in its

location list, the NAUO.reference_designator attribute is populated, and that it is unique

in the context of the NAUO.relating_product_definition.

Besides its simpler implementation structure in comparison to the previously used SHUO, MLRD

was designed specifically to support the External Element Reference (EER) mechanism. This
means that it is possible to define user defined attributes for assembly component instances
even in the case where the assembly structure is defined across several files. See Version 3.1 of
the Recommended Practices for External (Element) References, in particular section 6.4, for
instance identification in nested assemblies.

6.3 Attributes at the Geometry Level

The attachment of user-defined attributes to a single solid, surface or curve within the product

geometry is handled via the shape_aspect entity. There are two ways to associate the

shape_aspect with its geometric content: the “old” way using a shape_representation,

and a newer way using geometric_item_specific_usage.

For details see 6.3.2 and 6.3.3 below.

As stated in the introduction, please note that not every CAD system may be able to find attrib-
utes, which are assigned at the solid/surface level.

Note that there are some CAD systems which have additional structuring mechanisms in their
model tree beyond the usual part / assembly structure or layers and groups, as they are defined
in STEP, and may be capable of assigning user defined attributes to elements of these struc-
tures. The so-called “geometrical sets” in CATIA V5 are one example. As there is no equivalent
mechanism in STEP for these system-specific structures, and usually no match in other systems

T
o

p
 L

e
v
e

l
L

e
v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

T
o

p
 L

e
v
e

l
L

e
v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

Attribute

Case 1: When going down only

one level in the assembly tree, the

attribute can be attached directly

to the corresponding NAUO

Attribute

Case 1: When going down only

one level in the assembly tree, the

attribute can be attached directly

to the corresponding NAUO

AS1

L-Bracket-Assy

Nut-Bolt-Assy

Nut

NAUO

NAUO

Bolt

L-Bracket

NAUO

NAUO

Plate Rod Assembly

NAUO

NAUO

NAUO NAUO

NAUO

NAUO

NAUO

Rod

NAUONAUO

AS1

L-Bracket-Assy

Nut-Bolt-Assy

Nut

NAUO

NAUO

Bolt

L-Bracket

NAUO

NAUO

Plate Rod Assembly

NAUO

NAUO

NAUO NAUO

NAUO

NAUO

NAUO

Rod

NAUONAUO

MLRDAttribute

Case 2: When going down

several levels in the assembly

tree, a MLRD references the

list of NAUOs needed to

identify the correct instance.

MLRDAttribute

Case 2: When going down

several levels in the assembly

tree, a MLRD references the

list of NAUOs needed to

identify the correct instance.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 11
 http://www.cax-if.org/

as well, it is recommended to resolve these structures on export to STEP as described above,
following the assumption that

Each User Defined Attribute is valid for all Geometric Elements assigned to the shape_aspect.

Though it is technically possible to define “user practices” which preserve these structures in a
CAD to STEP to CAD round-trip exchange, these STEP files would typically not be interoperable
with other CAD systems, hence introducing ‘flavors’ to STEP that may lead to unexpected side
effects for users not aware of these details. If such practices are employed, they need to be
handled with great care and the limitations communicated clearly to all users. It is recommend-
ed that an “Implementors Agreement” be established between organizations wishing to ex-
change this type of data.

Note that in future activities, especially in the context of PMI data exchange, the need to assign
UDAs to machining features (hole, thread, pocket, round, fillet, chamfer, etc.) in the model may
come up. Support for these types of features is being worked on for AP242 Edition 2. The dedi-

cated entities for the semantic transfer of feature information (e.g. round_hole) are subtypes of

shape_aspect. This means that the structure defined in this section is upward compatible, and

exporting the geometry forming such features from a CAD system, as plain shape_aspects

now is a first step in this direction.

6.3.1 Shape Aspect Identification in AP242

In AP242, there is a uniqueness rule on each of shape_aspect, dimensional_location,

dimensional_size and shape_aspect_relationship, which requires the attribute pair

(id, of_shape) to be unique if the id attribute exists. There is also a global rule requiring

uniqueness of the id attribute across the population of a collection of the above entity types if

the id attributes exist. These rules have been introduced in the context of the Semantic Product

and Manufacturing Information (PMI) Representation capabilities and External Element Refer-
ences (EER). The second rule is more restrictive as it requires coordination amongst several

entity types. For backward compatibility reasons, AP242 does not formally require the id attrib-

ute to exist.

Since the id attribute is derived, an instance of id_attribute must be populated, which has

the id string as its attribute_value and any of the aforementioned entity types as identi-

fied_item.

While adding the id_attribute is allowed but not required in the formal AP242 document,

omitting it in an AP242 file will violate the business agreement for Semantic PMI and EER. Also,

in order not to have to make the decision what purpose a shape_aspect is used for, it is rec-

ommended to add an id_attribute to all instances of the above entities, with an

attribute_value string that is unique among all instances of id_attribute in the context

of the respective product_definition_shape, i.e. if there are 8 id_attribute that refer-

ence a combination of the above types which all reference the same product_definition_-

shape in their of_shape attribute, there shall be 8 distinct values of attribute_value.

There is no business requirement to add id_attribute in AP203e2 or AP214 files, since Se-

mantic PMI and EER are out of scope for these APs. It is, however, technically legal to do so.

6.3.2 Geometry Assignment using Shape Representation

This method has been used for Validation Properties at the Geometry Level since their incep-

tion. It can associate several geometric elements to a shape_aspect, but uses three entities to

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 12
 http://www.cax-if.org/

do so. Also, a large number of additional representations may have an impact on system

performance. The structure by which this relationship is shown is given in Figure 6 below.

The geometric elements to be referenced typically are manifold_solid_brep for solids and

advanced_face for surfaces. In general, all types of geometric_representation_item

are allowed, including edges, shells and surface models.

Figure 6: User-Defined Attributes at the Geometry Level (Shape Representation)

Part21 Example:

#10=PRODUCT('part 1','part 1','',#8);

#20=PRODUCT_DEFINITION_FORMATION('version 1','',#10);

#30=PRODUCT_DEFINITION('design',$,#20,#9);

#40=GENERAL_PROPERTY('','shipping information',$);

#200=PRODUCT_DEFINITION_SHAPE('',$,#30);

#210=SHAPE_DEFINITION_REPRESENTATION(#200,#220);

#220=ADVANCED_BREP_SHAPE_REPRESENTATION('#220',(#225,#226),#219);

#230=ADVANCED_FACE('#230',(#232), #235, .T.);

#250=SHAPE_ASPECT('face #230',$,#230,.F.);

#251=ID_ATTRIBUTE('sa_ cc503e2531f3',#250);

#255=PROPERTY_DEFINITION('shape for property','',#250);

#260=SHAPE_DEFINITION_REPRESENTATION(#255,#270);

#270=SHAPE_REPRESENTATION('',(#230),#219);

#260=PROPERTY_DEFINITION('shipping information',$,#250);

#290=GENERAL_PROPERTY_ASSOCIATION('',$,#40,#260);

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 13
 http://www.cax-if.org/

Note that in early versions (1.2 and older) of these Recommended Practices, the property_-

definition between shape_aspect and shape_definition_representation (#255 in

the Part21 Example) was accidentally missing. There are some STEP translators who have im-

plemented the structure with the missing property_definiton; this should be supported on

import to handle legacy data.

6.3.3 Geometry Assignment using Geometric Item Specific Usage

In AP203 Edition 2 and AP214 Edition 3, the new entity type geometric_item_specific_-

usage (GISU) was introduced, which was not available in earlier data models. It allows for a

much more efficient implementation, as only one entity and no additional representation is
needed. Since UDAs are assigned at the geometry level, and are assigned to one specific ele-

ment (solid, shell, face, curve), GISU can be used with no restrictions.

Note: AP242 introduces a uniqueness rule on GISU, which limits the number of GISU instances

per shape_aspect to one. Since a GISU can relate to only a single geometric item, if several

geometric elements need to be associated with a shape_aspect, the supertype item_-

identified_representation_usage has to be used.

Figure 7: User-Defined Attributes at the Geometry Level (GISU)

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 14
 http://www.cax-if.org/

Part21 Example:

#10=PRODUCT('part 1','part 1','',#8);

#20=PRODUCT_DEFINITION_FORMATION('version 1','',#10);

#30=PRODUCT_DEFINITION('design',$,#20,#9);

#40=GENERAL_PROPERTY('','shipping information',$);

#200=PRODUCT_DEFINITION_SHAPE('',$,#30);

#210=SHAPE_DEFINITION_REPRESENTATION(#200,#220);

#220=ADVANCED_BREP_SHAPE_REPRESENTATION('#220',(#225,#226),#219);

#230=ADVANCED_FACE('#230',(#232), #235, .T.);

#250=SHAPE_ASPECT('face #230',$,#230,.F.);

#251=ID_ATTRIBUTE('sa_ cc503e2531f3',#250);

#260=GEOMETRIC_ITEM_SPECIFIC_USAGE('','',#250,#220,#230);

#260=PROPERTY_DEFINITION('shipping information',$,#250);

#290=GENERAL_PROPERTY_ASSOCIATION('',$,#40,#260);

7 Definition of the Attribute Value
Depending on the information content of the user defined attribute which shall be transferred,
STEP allows for its definition as either name and description, name and value, or name, value

and unit. In every case, the anchor entity is the property_definition which is highlighted in

the figures in section 6 above.

To this property_definition, the actual value in the form of the applicable subtype of

representation_item is then linked through a property_definition_representation

and a representation.

Note that in order to unambiguously define a value for the attribute (see section 5.1), there may

be only one representation_item in the set of items of the representation.

With the currently available STEP schemas, this is indeed rather circumstantial, but unavoidable.
The CAx-IF will therefore encourage the standardization groups to pick up the suggestion to

invent an entity type property_definition_with_value, which will allow streamlining the

implementation by attaching the single representation_item subtype directly to the

property_definition. This was in fact proposed before, but rejected at that time.

7.1 Descriptive / String Attribute

A descriptive attribute stores an arbitrary text string in the description attribute. As usual in

STEP, any special characters in the name or description need to be encoded in Unicode. The
name shall be left empty, or, if used, repeat the name of the attribute.

Part21 Example:

#10=GENERAL_PROPERTY('','shipping information',$);

#70=PROPERTY_DEFINITION('shipping information',$, #30);

#71=DESCRIPTIVE_REPRESENTATION_ITEM('', 'This Side Up');

#72=REPRESENTATION('', (#71), #162);

#73=PROPERTY_DEFINITION_REPRESENTATION(#70, #72);

#75=GENERAL_PROPERTY_ASSOCIATION('',$, #10, #70);

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 15
 http://www.cax-if.org/

Figure 8: Definition of a user defined descriptive attribute

7.2 Value Attribute

A value attribute transports a general value which is not a piece of text, i.e. it is either

 an integer value

 a real value, which does not represent a measure value (see 7.3 below for those)

 a boolean value

AP203 edition 2 and AP242 provide specific subtypes of representation_item, that each

have a name (again, to be left empty or to repeat the name of the attribute) and an attribute

called “the_value” which is of the respective type:

 integer_representation_item.the_value is of type INTEGER

 real_representation_item.the_value is of type REAL

 boolean_representation_item.the_value is of type BOOLEAN

Figure 9: Definition of a user defined value attribute (INTEGER in this case)

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 16
 http://www.cax-if.org/

Part21 Example:

#11=GENERAL_PROPERTY('','assembly step',$);

#160=PROPERTY_DEFINITION('assembly step',$,#150);

#161=INTEGER_REPRESENTATION_ITEM('',2);

#162=REPRESENTATION('',(#161),#266);

#163=PROPERTY_DEFINITION_REPRESENTATION(#160,#162);

#164=GENERAL_PROPERTY_ASSOCIATION('',$,#11,#160);

Note that the specific subtypes shown here are not available in AP214. The following worka-
rounds are suggested for use in AP214 (see also older versions (pre-0.8) of this document):

 for INTEGER, use a value_representation_item with count_measure. Keep in

mind that count_measure is of type NUMBER, i.e. will map to REAL in the STEP file.

Therefore it is suggested to use an additional attribute (see 7.4 below) to explicitly trans-
fer the information that this shall be interpreted as INTEGER.

 for REAL, use a value_representation_item with numeric_measure.

 for BOOLEAN, use a descriptive_representation_item (as in 7.1), where the val-

ue of the .description attribute is either “TRUE” or “FALSE”. Again, it is suggested to

use an additional attribute (see 7.4 below) to explicitly transfer the information that this
shall be interpreted as BOOLEAN.

7.3 Measure Attribute

A measure attribute is given by its name, the measure value, and the measure unit.

Please refer to Annex B of this document for the specific measure types supported in STEP.
Please refer to Annex C for the definition of the corresponding units. During the Round25J Re-
view Meeting, the following agreement was made concerning the transfer of values with types:

 If it is possible to define the corresponding measure type and unit in the respective STEP
AP, transfer it semantically as described above. Note that there is a difference between
AP203e2/AP242 and AP214 due to the different versions of Part41 being used.

 If there is no corresponding type / unit, transfer the value including the unit as a text
string (see 7.1)

Figure 10: Definition of a user defined measure attribute

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 17
 http://www.cax-if.org/

Part21 Example:

#120=GENERAL_PROPERTY('','Hole Keep Out',$);

#5310=DIMENSIONAL_EXPONENTS(1.E0,0.E0,0.E0,0.E0,0.E0,0.E0,0.E0);

#5320=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.));

#5330=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(2.54E1),#5320);

#5340=(CONVERSION_BASED_UNIT('INCH',#5330)LENGTH_UNIT()NAMED_UNIT(#5310));

#5350=MEASURE_REPRESENTATION_ITEM('',POSITIVE_LENTGH_MEASURE(10.5),#5340);

#5360=REPRESENTATION('',(#5350),#200);

#5370=PROPERTY_DEFINITION('Hole Keep Out',$,#300);

#5380=PROPERTY_DEFINITION_REPRESENTATION(#5370,#5360);

#5390=GENERAL_PROPERTY_ASSOCIATION('',$,#120,#5370);

7.4 Transfer of Meta-Data for the User Defined Attributes

In order to enable a round-trip exchange of user defined attributes via STEP in a way that the
attributes are mapped onto the same definition as in the native system they originated from, it is
also possible to add additional information about the attributes, groups, or their values. This is
optional, and follows the same approach as described in 7.1 – but without the use of a

general_property – and one or more of these may be added to the following elements:

 definition of an attribute (see 5.1): property_definition for “meta data” pointing to

the general_property defining the attribute

 definition of an attribute group (see 5.2.1): property_definition for “meta data”

pointing to the general_property defining the attribute group

 definition of an attribute values group (see 5.2.2): property_definition for “meta da-

ta” pointing to property_definition defining the attribute values group

 an individual attribute value (see 7.1 - 7.3): property_definition for “meta data”

pointing to property_definition defining the attribute value.

7.4.1 Definition

Using this mechanism, it is possible to add even more information about an attribute, an attribute
value, or group thereof. This may include CAD-system specific data, such as whether the attrib-
ute is relevant for a data management system or not. The identifier of the additional information

is carried in the property_definition.name attribute, and the value is transferred in the

representation_item in the set of items of the referenced representation.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 18
 http://www.cax-if.org/

Figure 11: Specification of meta-data for an attribute and one of its values

The “meta data” will be defined as a “property of a property”, and they can be distinguished easi-
ly from the actual user defined attributes by two means:

 its property_defintion will point to a general_property or other property_-

definition, and not one of the model elements identified in section 6.

 its property_definition will have no associated general_property.

Figure 11 above illustrates this in combination with a measure attribute. Note that with the re-
strictions in many CAD systems mentioned in section 5, in the CAx-IF meta-data for UDA shall

always be attached to the property_definition for the attribute value, or – if supported –

the group of attribute values.

Note that these “meta-data” attributes will not be taken into account for the UDA Validation
Properties (see section 8). The following sections will give two common examples:

7.4.2 Designation of the Attribute Type

In order to transfer the name of the type for the user defined attribute as given in the originating

system, add an additional property including a descriptive_representation_item with

the following attribute characteristics:

 property_definition.name: ‘attribute type designation’

 descriptive_representation_item.description: The designation of the attrib-

ute type as given in the native system

This shall be linked to the attribute value definition (property_defintion).

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 19
 http://www.cax-if.org/

7.4.3 Attribute / Value / Group Description

In order to transfer a description for the attribute (Note that this is a description about the attrib-
ute, in contrast to a descriptive attribute as defined in section 7.1), add an additional property

containing a descriptive_representation_item with the following attribute values:

 property_definition.name: ‘attribute description’

 descriptive_representation_item.description: Textual information about the

attribute

Again, in the context of the current CAx-IF scope, this shall be linked to the property_def-

intion of the UDA or a group of values.

8 UDA Validation Properties

Since User Defined Attributes (UDA) may be used to transfer significant information, which is
relevant for either downstream applications or long-term archiving purposes, it shall be ensured
that no properties are lost during transfer. The STEP file structure for this count measure is
analogous to similar validation properties, e.g. the “number of children” assembly validation
property.

All UDA Validation Properties shall be attached at the part / product level so that all systems will
be capable of finding them.

There shall be two main groups of UDA Validation Properties:

[1] a count of UDAs for each model element type, i.e. how many UDAs are assigned to
parts, component instances, solids, faces, curves, etc.

[2] a count of UDAs for each main class of attribute data types (string, integer, real, boole-
an).

[3] a separate count of UDAs that are measure attributes per section 7.3, in order to distin-
guish numerical values with and without units.

The following rules apply to the counting:

 the number of attribute values (as defined in sections 7.1-7.3) shall be counted in total.

The general_properties and “meta data” (as in 7.4) will not be taken into account.

 the two sums of the two counts (“Element Sum” = sum of all UDAs per model element
counts [1] and “Type Sum” = sum of all UDAs per attribute data type counts [2]) have to
match.

o The separate count of measure attributes [3] will not be taken into account for the
matching of the sums, as these attributes are actually counted twice.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 20
 http://www.cax-if.org/

Figure 12: Definition of user defined Attribute Validation Properties

The name of the property_definition shall be “attribute validation property”. The name of

the value_representation_item(count_measure) depends on what is being counted:

UDA Model Element Types

value_representation_item.name Counts UDA at …

‘vertex user attributes’ vertices and / or points (elements of dim. 0)

‘edge user attributes’ edges and / or curves (elements of dim. 1)

‘face user attributes’ faces and / or surfaces (elements of dim. 2)

‘solid user attributes’ solids and / or shells (elements of dim. 3)

‘part user attributes’ the part/product level.

‘instance user attributes’
the instance of components in the assembly in
context of the product they are counted at.

Note that, as with Geometric Validation Properties, some CAD systems are not capable of han-
dling properties assigned to individual geometric elements, but only at the part/product level.
These systems should either disregard the geometry-level UDA validation properties, or flag the
resulting “errors” as a system limitation in the log file.

Note that UDAs at the assembly instance level shall be counted at the product (assembly node)
which defines the context of their use. For example, looking at Figure 5, assume there is one
UDA at the NAUO from AS1 to an L-Bracket Assembly, and another UDA at the MLRD which
connects the AS1 root node to a specific usage of the Nut. The “instance user attributes” count
at the product representing the AS1 root node would then be “2”.

If a system misses UDAs attached to MLRD due to the way it handles these properties internal-
ly, the resulting “error” from the validation properties should be clearly marked as a system limi-
tation in the log file.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 21
 http://www.cax-if.org/

A similar count is being proposed when groups of attributes (see 5.2.1) or groups of attribute
values (see 5.2.2) are used:

value_representation_item.name Counts …

‘user attribute groups’
…how many groups of attribute values are
defined for this part

‘group user attributes’

…how many attributes are in the group. Note
that this validation property (see Figure 12) has

to be linked to the property_definition

that defines the group.

Note that systems not handling groups of UDAs should either disregard these values, or again
flag the resulting “errors” as a system limitation in the log file.

UDA Data Type Classes

value_representation_item.name Counts UDA at that contain…

‘integer user attributes’ integer values (see 7.2)

‘real user attributes’ real numbers (see 7.2 and 7.3)

‘text user attributes’ arbitrary text (see 7.1)

‘boolean user attributes’ a boolean value (see 7.2)

‘measure value user attributes’ a measure value (see 7.3)

Note the count for ‘real user attributes’ shall include all numeric values that are represented by a
real number, regardless of whether they have a unit attached (see 7.3) or not (see 7.2).

Version 1.4 of this document introduced the additional count for ‘measure value user attributes’,
which will count only real numbers with an assigned unit (see 7.3). Since those are now counted
twice, the measure value count shall not be included in the “type sum” for matching with the “el-
ement sum” as described above.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 22
 http://www.cax-if.org/

9 Usage of UDA in combination with External References
In many integration scenarios, STEP is well-established as a process-accompanying neutral
format to exchange metadata across domains and organizations. The user defined attributes as
defined in this document are a subset of this important information.

This section summarizes how to transfer part-level UDA via STEP when the assembly data is
stored in one or several STEP files with external references and the part files are in native for-
mat. This is a typical scenario in industries where large assemblies often occur.

In order to ensure consistency, it is important that the part-level UDA are always specified in the
referenced file, so that they are defined only once for all occurrences of that part (see section
6.2 for UDA that apply only to certain instances of a component).

This enables the following scenarios:

 Nested external references, where the assembly structure is split into many files, and it is
thus likely that there will be several files referencing the same part. With the definition of
the UDA on the referenced side, they need to be defined only once.

 Whenever the process needs to access the UDA without the need (or the capability) to
open the native data

 Updating the UDA without having to update the assembly data

9.1 Intermediate File Approach

The chosen approach uses an “intermediate file”, as shown in Figure 13 below:

Figure 13: Intermediate File for External References with Part-Level UDA

The entity structure in the referencing STEP assembly file remains unchanged from the usual
external references (compare to Figure 3 in the Rec. Practices for External References, v2.1),
except that it will point to the STEP file instead of the native file representing the part.

The intermediate STEP file with the UDA will be quite small and contain only the following infor-
mation:

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 23
 http://www.cax-if.org/

Figure 14: Structure of the Intermediate File

9.2 Known Limitations

The “intermediate file” approach described above will work for part-level UDA with external ref-
erences (entire assembly structure in one file) and nested external references (assembly struc-
ture broken down into individual files per assembly level).

For UDA at assembly component instance level, there is a clear limitation at the moment as this
will work with external references only in the case where the entire assembly structure is given in
one file, so that the SHUO approach can be used (cp. Figure 5 in section 6.2). In the case of
nested external references, this is not possible as there is currently no way to define the correct
instance path through the assembly structure across several files.

Should such an approach become available in the future, it will be added to this document.

10 Part 21 File Examples
STEP Files relating to the capability described in this document will be made available in the
public STEP File Library on the CAx-IF homepage; see either http://www.cax-if.de/library/ or
http://www.cax-if.org/library/.

The files will based on current schemas for both AP203 Edition 2 and AP214, and will have been
checked for syntax and compliance with the Recommended Practices.

http://www.cax-if.de/library/
http://www.cax-if.org/library/

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 24
 http://www.cax-if.org/

Annex A Availability of implementation schemas

A.1 AP214

The AP214 schemas support the implementation of the capabilities as described. The schemas
can be retrieved from:

 IS Version (2001) – http://www.cax-if.de/documents/ap214_is_schema.zip

 3rd Edition (2010) – http://www.cax-if.de/documents/AP214E3_2010.zip

A.2 AP203 2nd Edition

The long form EXPRESS schema for the second edition of AP203 can be retrieved from:

 http://www.cax-if.de/documents/part403ts_wg3n2635mim_lf.exp

Note that the first edition of AP203 is no longer support in the Recommended Practices.

A.3 AP242

The long form EXPRESS schema for the first edition of AP242 can be retrieved from:

 http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip

http://www.cax-if.de/documents/ap214_is_schema.zip
http://www.cax-if.de/documents/AP214E3_2010.zip
http://www.cax-if.de/documents/part403ts_wg3n2635mim_lf.exp
http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 25
 http://www.cax-if.org/

Annex B Measure Value Types available in AP214 and AP203e2

The following types for a measure value are defined in section 21.3 of Part 41.

Note that AP214 only supports a subset of these types. These are underlined in the list below.

absorbed_dose_measure An absorbed_dose_measure is the value of the absorbed dose of
radiation

acceleration_measure An acceleration_measure is the value of the rate of change of velocity

amount_of_substance_-
measure

An amount_of_substance_measure is the value for the quantity of a
substance when compared with the number of atoms in 0.012
kilogram of carbon 12

area_measure An area_measure is the value of the extent of a surface

capacitance_measure A capacitance_measure is the value of capacitance

celsius_temperature_-
measure

A celsius_temperature_measure is the value for the degree of heat of
a body

conductance_measure A conductance_measure is the value of an electrical conductance

context_dependent_measure A context_dependent_measure is the value of a physical quantity that
may be interpreted based on the context in which it is used

count_measure A count_measure is the value of a count

descriptive_measure A descriptive_measure is a textual value of a physical quantity

dose_equivalent_measure A dose_equivalent_measure is the value of the radiation dose equiva-
lent

electric_charge_measure An electric_charge_measure is the value of an electrical charge

electric_current_measure An electric_current_measure is the value for the movement of
electrically charged particles

electric_potential_measure An electric_potential_measure is the value of an electrical potential

energy_measure An energy_measure is the value of energy, or work done, in a system

force_measure A force_measure is the value of a force

frequency_measure A frequency_measure is the value of a frequency

illuminance_measure An illuminance_measure is the value of illuminance

inductance_measure An inductance_measure is the value of inductance

length_measure A length_measure is the value of a distance

luminous_flux_measure A luminous_flux_measure is the value of luminous flux

luminous_intensity_measure A luminous_intensity_measure is the value for the brightness of a
body

magnetic_flux_density_-
measure

A magnetic_flux_density_measure is the value of magnetic flux densi-
ty

magnetic_flux_measure A magnetic_flux_measure is the value of magnetic flux

mass_measure A mass_measure is the value of the amount of matter that a body
contains

non_negative_length_- A non_negative_length_measure type is a length_measure whose

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 26
 http://www.cax-if.org/

measure value is greater than or equal to zero

numeric_measure A numeric_measure is the numeric value of a physical quantity

parameter_value A parameter_value is the value which specifies the amount of a
parameter in a parameter space

plane_angle_measure A plane_angle_measure is the value of an angle in a plane

positive_length_measure A positive_length_measure is a length_measure that is greater than
zero

positive_plane_angle_-
measure

A positive_plane_angle_measure is a plane_angle_measure that is
greater than zero

positive_ratio_measure A positive_ratio_measure is a ratio_measure that is greater than zero

power_measure A power_measure is the value of power, or the rate of doing work

pressure_measure A pressure_measure is the value of force per unit area

radioactivity_measure A radioactivity_measure is the value of the radioactive disintegration

ratio_measure A ratio_measure is the value of the relation between two physical
quantities that are of the same kind

resistance_measure A resistance_measure is the value of electrical resistance

solid_angle_measure A solid_angle_measure is the value of a solid angle

thermodynamic_temperature_-
measure

A thermodynamic_temperature_measure is the value for the degree of
heat of a body

time_measure A time_measure id the value of the duration of periods

velocity_measure A velocity_measure is the value of the rate of change of position

volume_measure A volume_measure is the value of the solid content of a body

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 27
 http://www.cax-if.org/

Annex C Recommendation for the Definition of Units1
This clause provides recommendations for instance population for the definition of units in the
data set. Once the definition is created, other data instances reference the units as required.

Note: The definitions given in this Annex are valid for the following schema versions:

 AP214 3rd Edition (2010)

 AP203 2nd Edition (later than Nov. 2008)

 AP242 (all versions)

The definitions hereafter do not apply to AP214 IS (2001) and any version of AP203 before end
of 2008, as they use an older version of Part 41.

Definitions for area and volume units for AP214 IS (2001) are given in Annex C.4.3.

C.1 SI Base Unit Definitions

The following is the recommendation for exchange of SI base unit definitions:

Base unit reference instances:

#4 =(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT($,.METRE.));

#14 =(MASS_UNIT() NAMED_UNIT(*) SI_UNIT(.KILO.,.GRAM.)); 2

#24 =(NAMED_UNIT(*) SI_UNIT($, .SECOND.) TIME_UNIT());

#26 =(ELECTRIC_CURRENT_UNIT() NAMED_UNIT(*) SI_UNIT($, .AMPERE.));

#426=(NAMED_UNIT(*) SI_UNIT($, .KELVIN.) THERMODYNAMIC_TEMPERATURE_UNIT());

#427=(AMOUNT_OF_SUBSTANCE_UNIT() NAMED_UNIT(*) SI_UNIT($, .MOLE.));

#428=(LUMINOUS_INTENSITY_UNIT() NAMED_UNIT(*) SI_UNIT($, .CANDELA.));

C.2 SI Derived Units

SI derived unit exchange should use the derived_unit and unit_elements referencing

either a SI base unit or other SI derived units rather than relying directly on dimensional_-

exponents
3.

C.2.1 SI Derived Unit using User Defined Names

The list of entries in si_unit_name in Part 41 is not exhaustive. In the case that the name of a

derived unit is not included in si_unit_name then an instance of derived_-unit (that is not

also an instance of si_unit) shall be populated. In that case, the derived_unit.name at-

tribute shall be populated to identify the unit.

1 http://physics.nist.gov/cuu/Units/units.html

2 This instance is created to support definition of SI derived units and is the formal definition that the kilo-

gram is the SI unit of mass.
3 TC1 for Part41 ed3 addresses the kilogram issue by isolating the application of .KILO. used to define a
unit from the application of .KILO. used as a prefix in a measure value. It also corrected invalid data struc-

tures for area_unit and volume_unit.

http://physics.nist.gov/cuu/Units/units.html

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 28
 http://www.cax-if.org/

C.2.2 SI Derived Unit using Predefined Names

In the case that the name of a derived unit is included in si_unit_name, then an instance of

the name specific subtype of derived_unit and si_unit shall be populated. In that case, the

derived_unit.name is set equal to the si_unit_name by the schema and any population of

derived_unit.name is ignored. The recommendation is to not populate the

derived_unit.name attribute.

List of SI derived units whose names are included in si_unit_name:

 absorbed_dose_unit

 radioactivity_unit

 capacitance_unit

 dose_equivalent_unit

 electric_charge_unit

 conductance_unit

 electric_potential_unit

 energy_unit

 magnetic_flux_density_unit

 force_unit

 frequency_unit

 illuminance_unit

 inductance_unit

 magnetic_flux_unit

 power_unit

 pressure_unit

 resistance_unit

C.3 Derived Units whose System of Units is Unspecified

The following derived units are included in Part 41 but their system of units is unspecified in
Part 414:

 acceleration

 area

 velocity

 volume

C.3.1 Receiver expected to infer SI Derived Units for Unspecified Units

If all derived_unit_element instances reference SI units, then the derived unit is an SI de-

rived unit.

C.3.2 Receiver expected to infer some Non SI Units for Unspecified Units

For the case that other units are exchanged (e.g., English engineering) each of the derived_-

unit_element instances referenced by the derived_unit should be in the same system of

units.

4 Part 41 specifies the fact that it is a derived_unit and the dimensional_exponents values for the

unit.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 29
 http://www.cax-if.org/

C.4 Detailed Examples of Measure Unit Definitions

C.4.1 Definition of SI Units

Definition of “Newton”:

A Newton is [kg*m*sec-2]. Part 41 provides the ability to explicitly state that force is derived, that
the Newton is a SI derived unit with a name.

Part 41 requires to populate kilogram as the mass unit when Newton is defined so as to make
the mathematical properties of the data set consistent with SI system of units5.

Recommended approach:

/* establish system of units */

#5=DERIVED_UNIT_ELEMENT(#4,1.0);

#15=DERIVED_UNIT_ELEMENT(#14,1.0);

#25=DERIVED_UNIT_ELEMENT(#24,-2.0);

/* establish newton as SI force unit */

#4161100=SI_FORCE_UNIT((#5,#15,#25),*,$,.NEWTON.);

Definition of “Pascal”:

A Pascal is 1 N/m2. Therefore a Pascal is [kg*m-1*sec-2]. The recommended approach is to de-
rive a Pascal from a Newton previously defined.

/* establish the division by m^2. */

#550005=DERIVED_UNIT_ELEMENT(#4,-2.0);

/* establish a reference to a Newton already defined */

#5500025=DERIVED_UNIT_ELEMENT(#4161100,1.0);

#4161200=SI_PRESSURE_UNIT((#550005,#5500025),*,$,.PASCAL.);

Figure 15: SI Unit Definition for "Pascal"

5 If the mass_unit prefix is not provided, even though the Newton is declared to be the unit, the numerical

instance data declares the unit to be the dyne.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 30
 http://www.cax-if.org/

Definition of “Joule”:

A Joule is 1 N*m. Therefore a Joule is [kg*m2*sec-2]. The Joule may be derived from SI base
units or may be derived from a Newton previously defined. The recommended approach is to
derive a Joule from a Newton previously defined.

/* establish the multiplication by m. */

#650005=DERIVED_UNIT_ELEMENT(#4,1.0);

/* establish a reference to a newton already defined */

#6500025=DERIVED_UNIT_ELEMENT(#4161100,1.0);

#4161300=SI_ENERGY_UNIT((#650005,#6500025),*,$,.JOULE.);

Definition of “Watt”:

A Watt is 1 Joule/sec. Therefore a Watt is [kg*m2*sec-3]. The Watt may be derived from SI base
units or may be derived from a Joule previously defined. The recommended approach is to de-
rive a Watt from a Joule previously defined.

/* establish the division by sec. */

#750005=DERIVED_UNIT_ELEMENT(#24,-1.0);

/* establish a reference to a joule already defined */

#7500025=DERIVED_UNIT_ELEMENT(#4161300,1.0);

#4161400=SI_POWER_UNIT((#750005,#7500025),*,$,.WATT.);

Definition of “Coulomb”:

A Coulomb is 1 amp*sec. The Coulomb is derived from SI base units. The coulomb itself does
not require population of kilogram but is included herein because it may be used in the deriva-
tion of capacitance.

/* establish system of units */

#8500015=DERIVED_UNIT_ELEMENT(#24,1.0);

#8500025=DERIVED_UNIT_ELEMENT(#26,1.0);

/* establish coulomb as SI electric charge unit */

#1001=SI_ELECTRIC_CHARGE_UNIT((#8500015,#8500025),*,$,.COULOMB.);

Definition of “Volt”:

A Volt is 1 Watt/Amp. Therefore a Volt is [kg*m2*sec-3*amp-1]. The Volt may be derived from SI
base units or may be derived from a Watt previously defined. The recommended approach is to
derive a Volt from a Watt previously defined.

/* establish the division by amp. */

#950005=DERIVED_UNIT_ELEMENT(#26,-1.0);

/* establish a reference to a watt already defined */

#9500025=DERIVED_UNIT_ELEMENT(#4161400,1.0);

#1002=SI_ELECTRIC_POTENTIAL_UNIT((#950005,#9500025),*,$,.VOLT.);

Definition of “Farad”:

A Farad is 1 Coulomb/Volt. Therefore a Farad is [kg-1*m-2*sec4*amp2]. The Farad may be de-
rived from SI base units or may be derived from a Coulomb and Volt previously defined. The
recommended approach is to derive a Farad from a Coulomb and Volt previously defined.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 31
 http://www.cax-if.org/

/* establish a reference to a coulomb already defined. */

#860005=DERIVED_UNIT_ELEMENT(#1001,1.0);

/* establish a reference to a volt already defined */

#8600025=DERIVED_UNIT_ELEMENT(#1002,-1.0);

#4161500=SI_CAPACITANCE_UNIT((#860005,#8600025),*,$,.FARAD.);

Definition of “Ohm”:

An Ohm is 1 Volt/Amp. Therefore an Ohm is kg*m2*sec-3*amp-2]. The Ohm may be derived from
SI base units or may be derived from a Volt previously defined. The recommended approach is
to derive an Ohm from a Volt previously defined.

/* establish a reference to a volt already defined. */

#870005=DERIVED_UNIT_ELEMENT(#1002,1.0);

/* establish a reference to amp*/

#8700025=DERIVED_UNIT_ELEMENT(#26,-1.0);

#10099=SI_RESISTANCE_UNIT((#870005,#8700025),*,$,.OHM.);

Definition of “Siemens”:

A Siemens is 1 Amp/Volt. Therefore a Siemens is [kg-1*m-2*sec3*amp2]. The Siemens may be
derived from SI base units or may be derived from a Volt previously defined, or may be derived
from an Ohm previously defined. The recommended approach is to derive a Siemens from an
Ohm previously defined.

/* establish a reference to an ohm already defined. */

#880005=DERIVED_UNIT_ELEMENT(#10099,-1.0);

#100=SI_CONDUCTANCE_UNIT((#880005),*,$,.SIEMENS.);

Definition of “Weber”:

A Weber is 1 Volt*Second. Therefore a Weber is [kg*m2*sec-2*amp-1]. The Weber may be de-
rived from SI base units or may be derived from a Volt previously defined. The recommended
approach is to derive a Weber from a Volt previously defined.

/* establish a reference to a volt already defined. */

#890005=DERIVED_UNIT_ELEMENT(#1002,1.0);

/* establish a reference to second*/

#8900025=DERIVED_UNIT_ELEMENT(#24,1.0);

#10023=SI_MAGNETIC_FLUX_UNIT((#890005,#8900025),*,$,.WEBER.);

Definition of “Tesla”:

A Tesla is 1 Weber/Meter2. Therefore a Tesla is [kg*sec-2*amp-1]. The Tesla may be derived
from SI base units or may be derived from a Weber previously defined. The recommended ap-
proach is to derive a Tesla from a Weber previously defined.

/* establish a reference to a weber already defined. */

#900005=DERIVED_UNIT_ELEMENT(#10023,1.0);

/* establish a reference to metre*/

#9000025=DERIVED_UNIT_ELEMENT(#4,-2.0);

#4161600=SI_MAGNETIC_FLUX_DENSITY_UNIT((#900005,#9000025),*,$,.TESLA.);

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 32
 http://www.cax-if.org/

Definition of “Henry”:

A Henry is 1 Weber/Amp. Therefore a Henry is [kg*m2*sec-2*amp-2]. The Henry may be derived
from SI base units or may be derived from a Weber previously defined. The recommended ap-
proach is to derive a Henry from a Weber previously defined.

/* establish a reference to a weber already defined. */

#910005=DERIVED_UNIT_ELEMENT(#10023,1.0);

/* establish a reference to ampere*/

#9100025=DERIVED_UNIT_ELEMENT(#26,-1.0);

#47000=SI_INDUCTANCE_UNIT((#910005,#9100025),*,$,.HENRY.);

C.4.2 Non SI unit definitions

Well-known are the definition of length, area and volume. Examples included are square millime-
ters, cubic millimeters, inches, square inches and cubic inches.

Definition of Square Millimeter:

#613=DERIVED_UNIT_ELEMENT(#4,2.0);

#614=AREA_UNIT((#613));

#615=NAME_ATTRIBUTE(’SQUARE MILLIMETRE’,#614);

Note In this example #614 defines an area unit of square millimeter. Area_unit is an instance

of derived_unit but is not an instance of si_unit so derived_unit.name is populated.

Definition of Cubic Millimeter:

#610=DERIVED_UNIT_ELEMENT(#4,3.0);

#611=VOLUME_UNIT((#610));

#612=NAME_ATTRIBUTE(’CUBIC MILLIMETRE’,#611);

Note In this example #614 defines a volume unit of cubic millimeter. Volume_unit is an in-

stance of derived_unit but is not an instance of si_unit so derived_unit.name is popu-

lated.

Definition of Inch:

#71 =DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.) ;--length

#2944=(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.));

/* Because the unit is an si_unit, the dimensional exponents for #2944 are not

exchanged but are calculated based on the enumeration values. */

#2945=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(2.54E1),#2944);

#2946=(CONVERSION_BASED_UNIT('INCH',#2945) LENGTH_UNIT() NAMED_UNIT(#71));

Note There is a (new) local rule on conversion_based_unit requiring the dimensional_-

exponents of a conversion_based_unit to be equal to the dimensional_exponents of

the unit_component attribute of the conversion_factor. This example satisfies that rule

because record #2946 references #71 directly and dimensional_exponents are derived by

the receiver (if need be) for record #2944.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 33
 http://www.cax-if.org/

Definition of Square Inch:

#6130=DERIVED_UNIT_ELEMENT(#2946,2.0);

#6140=AREA_UNIT((#6130));

#6150=NAME_ATTRIBUTE(’SQUARE INCH’,#6140);

Note In this example #6140 defines an area unit of square inch. Area_unit is an instance of

derived_unit but is not an instance of si_unit so derived_unit.name is populated.

Definition of Cubic Inch:

#6100=DERIVED_UNIT_ELEMENT(#2946,3.0);

#6110=VOLUME_UNIT((#6100));

#6120=NAME_ATTRIBUTE(’CUBIC INCH’,#6110);

Note In this example #6110 actually defines a volume unit of cubic inch. Volume_unit is an

instance of derived_unit but is not an instance of si_unit so derived_unit.name is

populated.

Definition of “Pound Force”:

Recommended approach using existing Newton declaration (#100):

/* conversion from newton to 'pound force' where ‘pounds force is defined per

the English Gravitational System. */

#111=DIMENSIONAL_EXPONENTS(1.,1.,-2.,0.,0.,0.,0.) ;--force

#101=FORCE_MEASURE_WITH_UNIT(FORCE_MEASURE(4.4482216152605),#100);

#103=(CONVERSION_BASED_UNIT('pound force',#101) FORCE_UNIT()

NAMED_UNIT(#111));

C.4.3 Non SI unit definitions for AP214 IS (2001)

The IS version of AP214, published in 2001, uses an older version of Part 41. This has an im-
pact on the instantiation of units since some entity types have been changed. For instance,

area_unit is a subtype of named_unit in AP214-IS, while in all APs using the new Part 41, it

is a subtype of derived_unit.

The instantiations of area and volume units for AP214-IS are given below. Those are the most
widely used units, as they are needed for Geometric Validation Properties. Instantiation exam-
ples for other types of measure can be given upon request.

Definition of Square Millimeter:

#130=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.));

#200=DERIVED_UNIT((#210));

#210=DERIVED_UNIT_ELEMENT(#130,2.);

Note In this example #200 defines an area unit of square millimeter.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 34
 http://www.cax-if.org/

Definition of Cubic Millimeter:

#130=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.));

#220=DERIVED_UNIT((#230));

#230=DERIVED_UNIT_ELEMENT(#130,3.);

Note In this example #220 defines an area unit of square millimeter.

Definition of Inch:

#709=(CONVERSION_BASED_UNIT('INCH',#712) LENGTH_UNIT ()NAMED_UNIT(#710));

#710=DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.);

#712=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4),#713);

#713=(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.));

Definition of Square Inch:

#209=DERIVED_UNIT_ELEMENT(#219,2.);

#211=NAME_ATTRIBUTE('SQUARE INCH',#213);

#213=DERIVED_UNIT((#209));

#219=(CONVERSION_BASED_UNIT('INCH',#226) LENGTH_UNIT() NAMED_UNIT(#223));

#223=DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.);

#226=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4),#229);

#229=(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.));

Note In this example #213 defines an area unit of square inch.

Definition of Cubic Inch:

#208=DERIVED_UNIT_ELEMENT(#47218,3.);

#210=NAME_ATTRIBUTE('CUBIC INCH',#212);

#212=DERIVED_UNIT((#208));

#218=(CONVERSION_BASED_UNIT('INCH',#225) LENGTH_UNIT() NAMED_UNIT(#222));

#222=DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.);

#225=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4),#228);

#228=(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.));

Note In this example #212 actually defines a volume unit of cubic inch.

CAx-IF Recommended Practices
User Defined Attributes
Version 1.4, July 20, 2015

© CAx Implementor Forum http://www.cax-if.de/ 35
 http://www.cax-if.org/

C.5 Example Application of Unit Definitions to Measure Value

#714=AREA_MEASURE_WITH_UNIT(AREA_MEASURE(150.0),#614);

In this example #714 describes the surface area of a small cube with 5mm sides

#711=VOLUME_MEASURE_WITH_UNIT(VOLUME_MEASURE(125.0),#611);

In this example #711 describes the volume of a small cube with 5mm sides

#7140=AREA_MEASURE_WITH_UNIT(AREA_MEASURE(150.0),#6140);

In this example #7140 describes the surface area of a small cube with 5in sides

#7110=VOLUME_MEASURE_WITH_UNIT(VOLUME_MEASURE(125.0),#6110);

In this example #7110 describes the volume of a small cube with 5in sides.

#8000=FORCE_MEASURE_WITH_UNIT(FORCE_MEASURE(250.2),#103);

In this example #8000 describes the force of 250.2 pounds force produced by an engine.

C.6 Measure schema errata

The current (Amp) exponent for Farad has an error in the FUNCTION dimensions_for_si_-

unit and in the FUNCTION valid_units. The correct value is 2, whilst the AP203e2 and

AP214 schemas have 1. This error was corrected with ISO 10303-41ed3TC2. It is recommend-
ed to patch the longform schema manually.

