

Recommended Practices

for

Model Styling

And Organization

Release 1.5

August 15, 2016

Contacts

Jochen Boy

PROSTEP AG

Dolivostraße 11

64293 Darmstadt / Germany

jochen.boy@prostep.com

Phil Rosché

ACCR, LLC.

125 King Charles Circle

Summerville, SC 29485 USA

phil.rosche@accr-llc.com

© CAx Implementor Forum

mailto:jochen.boy@prostep.com
mailto:phil.rosche@accr-llc.com

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 2
 http://www.cax-if.org/

Table of Contents

1 Introduction .. 4

2 Scope .. 4

3 Document Identification .. 4

4 Model Styling ... 5

4.1 Global Styling Container .. 5

4.2 Coloring of Solids, Surfaces and Curves ... 6

4.3 Overriding Styles ... 11

4.4 Point Style & Color .. 14

4.5 Styling of Axis Placements .. 15

5 Assembly Component Instance Styling .. 15

5.1 Linking the Style to the Component Instance ... 16

5.2 Applicable Styles ... 18

6 Layers ... 19

6.1 Assigning Elements to a Layer .. 19

6.2 Layer Naming Recommendations .. 19

6.3 Layer Styling .. 19

7 Groups .. 20

7.1 Assigning Elements to a Group ... 20

7.2 Defining Group Relationships .. 20

8 CATIA Geometric Sets .. 21

Annex A Part 21 File Examples .. 22

Annex B Availability of implementation schemas .. 22

B.1 AP214 ... 22

B.2 AP203 2nd Edition .. 22

B.3 AP242 ... 22

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 3
 http://www.cax-if.org/

List of Figures

Figure 1: Global Styling Container Definition .. 6

Figure 2: Color Representation for Surfaces / Solids .. 7

Figure 3: Color Representation for Curves ... 8

Figure 4: Definition of Transparent Color for a Surface ... 10

Figure 5: Structure of the Invisibility Assignment .. 11

Figure 6: Representation of Overriding Surface Color .. 12

Figure 7: Representation of Overriding Edge Color .. 13

Figure 8: Definition of Point Style and Color ... 14

Figure 9: Displaying an Axis Placement ... 15

Figure 10: Coloring an Axis Placement ... 15

Figure 11: Identification of the Instance to be styled ... 16

Figure 12: Styling an instance of a component in an assembly... 17

Figure 13: Styling a portion of an instance of a component in an assembly 18

Figure 14: Layer Representation .. 19

Figure 15: Group Assignment Representation .. 20

Figure 16: Group Relationship Representation ... 20

Figure 17: Geometric Set Example ... 21

List of Tables

Table 1: Styling choices .. 5

Table 2: RGB Values for Pre-Defined Colors .. 9

Table 3: Pre-defined Point Marker Symbols ... 14

Document History

This document replaces the following CAx-IF Recommended Practices:

 Recommended Practices for Colors and Layers;
published September 24, 2001

 Recommended Practices for Assembly Instance Styling; Release 1.0;
published November 19, 2002

 Recommended Practices for Colors, Layers and Groups; Draft Release 1.1;
published December 1, 2008

The current document covers the scope of the preceding ones, and adds new and updated
concepts.

Revision Date Change

1.0 2011-05-23 Initial creation

1.1 2011-09-05 Update of Invisibility Definition

1.2 2011-12-15 Addition of Point Style & Point Color

1.3 2012-11-01 Replacement of Assembly Instance Styling Section

1.4 2014-01-23 Addition of Transparency

1.5 2016-08-15 Moved Overriding Styles section; added Styling for Axis Placements;
added clarification to Layers section; added CATIA Geometric Sets.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 4
 http://www.cax-if.org/

1 Introduction
This document describes the recommended practices for implementing the ability to ex-
change information about model styling – colors and visibility – and model organization –
layers and groups – via the STEP standard.

The support of Colors and Layers is standard functionality in most STEP processors for
many years. These capabilities support a better presentation of the model on the screen, and
an organization of the elements in the model as per the user companies’ guidelines. Groups
represent additional organizational structures within the model supported by some CAD sys-
tems.

This document also describes the recommended practices for implementing the ability to
assign context dependent styles to individual instances of a component in an assembly via
the STEP standard.

The approaches described hereafter have been combined from previously separate, but re-
lated, documents and updated to the latest agreements and changes in the data structure.

2 Scope

The following are within the scope of this document:

 The specification of colors for solids and topologically bounded surfaces as well as
their constituent shape elements, and also geometrically bounded wireframe and sur-
face data

 The definition of transparency and reflection characteristics for surfaces

 The definition of point styles and colors

 The assignment of styles (colors, visibility) to instances of a component in an assem-
bly

 The definition of layers and groups

The following are out of scope for this document:

 The definition of “Saved Views” (as defined in digital product definition standards) for
model viewing organization. These are described in the “Recommended Practices for
the Representation and Presentation of Product and Manufacturing Information
(PMI)”.

 The definition of surface texture.

3 Document Identification
For validation purposes, STEP processors shall state which Recommended Practice docu-
ment and version have been used in the creation of the STEP file. This will not only indicate
what information a consumer can expect to find in the file, but even more important where to
find it in the file.

This shall be done by adding a pre-defined ID string to the description attribute of the

file_description entity in the STEP file header, which is a list of strings. The ID string

consists of four values delimitated by a triple dash (‘---‘). The values are:

Document Type---Document Name---Document Version---Publication Date

The string corresponding to this version of this document is:

CAx-IF Rec.Pracs.---Model Styling and Organization---1.5---

2016-08-15

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 5
 http://www.cax-if.org/

It will appear in a STEP file as follows:

FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.---Model Styling and

Organization---1.5---2016-08-15',),'2;1');

4 Model Styling
The following sections cover the aspects of displaying the model described in the STEP file
in the intended way. This is typically done by assigning colors at the top level, which are then
inherited down the model structure to the individual geometric elements. For individual ele-
ments, this styling can be overridden in general, or in a specific context. The applicable
styles also include invisibility.

4.1 Global Styling Container

It is a general convention in STEP – to be precise in Part46 – that only styled items shall be
displayed when viewing the contents of a STEP file. That means that all geometric elements
that do not have any style assigned at all shall be invisible.

If a style is assigned, there are two basic options: either, an explicit style is assigned – for
instance a specific color – defining the way the model shall be shown, or a “null” style is
used, meaning that it is up to the receiving system to determine the way the data is dis-
played. As this concept is quite important, it is summarized in the following table:

Assigned Style Model or model element is displayed….

none not at all

“null” style according to target system preferences (i.e. default colors)

explicit style (col-
or,…)

as defined in the STEP file

Table 1: Styling choices

In every STEP file, there shall be at least one global styling container, meaning an entity that
displays all information about the initial display of the model. This container can be one of
two entity types:

 draughting_model (“DM”)

 mechanical_design_geometric_presentation_representation

(“MDGPR”)

As there may be more than one DM or MDGPR in a STEP file, it is important to clearly identi-
fy the one acting as the global styling container. This is achieved in the following way:

 The name attribute is an empty string ('')

 If there are other instances of DM or MDGPR in the file, the global one is always ref-

erenced by the rep_2 attribute of mechanical_design_and_draughting_-

relationship (or its supertype, representation_relationship).

 Any occurrences of draughting_model_item_association will refer to the

global DM.

Note that any additional items in the set of items of the DM or MDGPR besides the part ge-
ometry (e.g. annotations, camera models…) as well as any advanced implementation ap-

proaches including presentation_set and presentation_area are out of scope for

this document. Please refer to the “Recommended Practices for the Representation and
Presentation of Product and Manufacturing Information (PMI)”, section 10.4 (“Saved Views”)
for further details.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 6
 http://www.cax-if.org/

Figure 1 below illustrates the minimum set of display information required in a STEP file. It

defines that the entire part shape shall be displayed, by linking the top-level shape_-

representation (typically advanced_brep_shape_representation (“ABSR”) for

solid models) to the global styling container. Definition of the null_style means that the

target system’s preferred or default settings will be applied to display the data.

The structure in Figure 1 shall be created for all top-level representations containing geome-

try. This also applies to supplemental geometry (constructive_geometry_represen-

tation, cp. corresponding Recommended Practices), as well as surface or wireframe mod-

els. For an assembly, it is sufficient to include the top node shape_representation. By

convention this will then apply to all child nodes as well.

Important Note The styling container and the shape representations mapped into it need to

share the same geometric_representation_context. The mapped_item.map-

ping_target and representation_map.mapping_origin therefore shall define a unit

transformation, i.e. with (0/0/0) as origin and the unit vectors as directions.

Figure 1: Global Styling Container Definition

4.2 Coloring of Solids, Surfaces and Curves

4.2.1 Priority and inheritance of model colors

The coloring information is always inherited from the solid or surface down to its constituent
faces and edges. The priority list for coloring elements in topological models is as follows:

1. solids (manifold_solid_brep, brep_with_voids) OR

surfaces (shell_based_surface_model)

2. surfaces only (open_shell, closed_shell)

3. faces / edges

4. geometric surfaces / curves

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 7
 http://www.cax-if.org/

Solids and surfaces may be colored by using fill_area_style_colour, where faces

lying on a solid should be styled by overriding the solid style, as are the edges. The edges
are treated as being independent of the face due to them potentially being used by two fac-
es. This could lead to a conflict when the two faces were colored differently. See sec-
tions 4.2.4 and 4.3.2 for handling of overriding styles.

In order to maintain similarity of style, it was decided at the 7th CAx Implementor Forum
meeting to extend this approach to include geometrically bounded surfaces and wireframes.
Thus, the priority list for coloring these elements is as follows:

1. Wireframe / Surface collector (geometric_set, geometric_curve_set)

2. Geometric Representation Item (e.g. trimmed_curve, b_spline_surface)

Colors should be instantiated from the top down for these hierarchies, e.g. the solid should
al-ways be colored, then any differences in face colors applied by overriding the solid color

for the different face. Similarly for wireframe, the geometric_set / geometric_curve_-

set should always be colored in the majority color for the geometric entities, those deviating

from this majority color being overridden.

4.2.2 Color Instantiation

Colors can be defined for the surfaces of a model by assigning it to the respective solid, shell
or surface, based on the priority list given in section 4.2.1 above.

Note that the two sides of a surface can have different colors assigned; the default recom-

mendation is to assign the same color to both sides (surface_side = .BOTH.)

Figure 2 below illustrates the structure to assign a specific color to a surface:

Figure 2: Color Representation for Surfaces / Solids

Note: Faces of a solid or shell usually inherit their color from the superordinate model ele-
ment as stated in 4.2.1. If a particular face of a solid or shell shall have a different color, over-
riding face color as defined in section 4.3 below has to be applied.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 8
 http://www.cax-if.org/

Part21 Example:

#164=MANIFOLD_SOLID_BREP('',#163);

#226=DRAUGHTING_PRE_DEFINED_COLOUR('cyan');

#227=FILL_AREA_STYLE_COLOUR('',#226);

#228=FILL_AREA_STYLE('',(#227));

#229=SURFACE_STYLE_FILL_AREA(#228);

#230=SURFACE_SIDE_STYLE('',(#229));

#231=SURFACE_STYLE_USAGE(.BOTH.,#230);

#232=PRESENTATION_STYLE_ASSIGNMENT((#231));

#233=STYLED_ITEM('',(#232),#164);

#276=DRAUGHTING_MODEL('#276',(#233,#241,#246,#254,#255,#263,#268,#273,),#26

9);

Edges, curves and sets of curves in a solid, surface or wireframe model can be assigned a

color by using the curve_style entity.

Note: Edge curves usually inherit their color from the face they are the edge of (see 4.2.1). If
the edge shall have a different color than its face, overriding edge color as defined in section
4.3.2 below has to be applied.

Figure 3 below illustrates the structure to assign a specific color to a surface:

Figure 3: Color Representation for Curves

Part21 Example:

#87=EDGE_CURVE('',#28,#24,#66,.T.);

#242=DRAUGHTING_PRE_DEFINED_COLOUR('yellow');

#243=DRAUGHTING_PRE_DEFINED_CURVE_FONT('continuous');

#244=CURVE_STYLE('',#243,POSITIVE_LENGTH_MEASURE(1.0),#242);

#245=PRESENTATION_STYLE_ASSIGNMENT((#244));

#246=STYLED_ITEM('',(#245),#87);

#276=DRAUGHTING_MODEL('#276',(#233,#241,#246,#254,#255,#263,#268),#269);

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 9
 http://www.cax-if.org/

4.2.3 Pre-Defined Colors

Table 2 below lists the pre-defined colors along with the RGB values that shall be assumed
for them:

Color RGB

'black' 0.0, 0.0, 0.0

'white' 1.0, 1.0, 1.0

'red' 1.0, 0.0, 0.0

'green' 0.0, 1.0, 0.0

'blue' 0.0, 0.0, 1.0

'yellow' 1.0, 1.0, 0.0

'cyan' 0.0, 1.0, 1.0

'magenta' 1.0, 0.0, 1.0

Table 2: RGB Values for Pre-Defined Colors

4.2.4 Transparency and Reflectance for Surfaces

In addition to a plain color, the appearance of a surface on screen can be enhanced by add-
ing transparency and reflection characteristics as rendering options. This can be done in-
stead of or in addition to the color instantiation as shown in section 4.2.2.

In general, whenever transparency or reflectance is defined, it is recommended to replace

the surface_style_fill_area in Figure 2 with an instance of surface_style_ren-

dering_with_properties for the definition of a plain color. This allows the realistic visu-

alization of surfaces with properties which determine transparency and reflection characteris-
tics.

Note: Systems not supporting transparency or reflectance shall treat the colour used by

surface_style_rendering_with_properties the same way as the colour in Figure

2.

Note: if a pattern (e.g. hatch) shall be applied as fill style, the two surface sides styled can be

used simultaneously. In this case, the same colour shall be used by both styles, and the

transparency shall be defined on the same surface side(s) the fill area style is defined on.
Though it is legal to define more than one style, older systems might support only one style.

In addition to the surface_colour, the entity type surface_style_rendering_with_-

properties has the following attributes:

 rendering_method: specifies the method which shall be used for the shading of

surfaces. This is an enumeration type with the following defined values:

o constant_shading: a reflectance calculation is performed for each facet of

the approximated surface to produce one reflected color per facet. The point
on the facet used in the calculation is implementation-dependent. The color

used in the reflectance calculation is the surface_colour specified in the

relevant surface_style_rendering entity.

o colour_shading: a reflectance calculation is performed at each vertex of

each facet of the approximated product shape, using the surface_colour

and the surface normals in the vertices. The resulting reflected colors are in-
terpolated linearly across each facet.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 10
 http://www.cax-if.org/

o dot_shading: any dot products needed by the reflectance equation are cal-

culated from surface normals at a set of positions on the surface. These dot
products are interpolated linearly across the surface. The reflectance calcula-
tion is performed at each interpolated position of the surface to produce a re-

flected color based on the interpolated dot products and the surface_-

colour of the relevant surface_style_rendering entity.

o normal_shading: the surface normals are interpolated linearly across the

surface. The reflectance calculation is performed at each interpolated position
of the surface to produce a reflected color based on the interpolated surface

normal and the surface_colour of the relevant surface_style_-

rendering entity.

 properties: This is a set of one or both rendering properties (transparency and re-

flectance), i.e. it is allowed to define only transparency, only the reflection characteris-

tics, or both. For surface_style_reflectance_ambient, subtypes are defined

which also allow for defining the diffuse and specular parts of the reflectance behavior
of a surface.

Figure 4 illustrates the entity structure to define a transparent color for a surface:

Figure 4: Definition of Transparent Color for a Surface

4.2.5 Invisibility

Invisibility is a capability that will allow hiding of model elements. It is basically handled in the
same way as any simple style (e.g. colors). Under the boundary conditions given in section
4.1 above, the usage convention is quite simple: Unless invisibility is present, all styled ele-
ments are visible.

The structure for invisibility is very simple: an instance of invisibility will be linked to the

styled_item shown on the left hand side of Figures 2-4:

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 11
 http://www.cax-if.org/

Figure 5: Structure of the Invisibility Assignment

In order to make sure the appearance of the component is not affected in systems not sup-

porting invisibility, the styled_item shall reference the style originally assigned to the com-

ponent, i.e. a null_style or a specific style as shown in Figures 2-4.

4.3 Overriding Styles

If one particular aspect of a model – e.g., one face of a solid – shall be styled differently,
there is no need to break down the styles for each individual element. The inheritance order
defined in 4.2.1 can still be used, and then the style for the element in question can be over-
ridden with a new style.

The sections below define this for color, but it is applicable for the other styling options de-
fined above as well.

4.3.1 Overriding Surface Colors

For coloring of a surface lying on a solid, the color of the solid is overridden. This happens by

using an instance of over_riding_styled_item. Only portions of shape redefined by

over_riding_styled_item will be affected. Portions not redefined by the overriding style

shall be handled as already defined

Part21 Example:

#150=ADVANCED_FACE('',(#144),#149,.T.);

#247=DRAUGHTING_PRE_DEFINED_COLOUR('magenta');

#248=FILL_AREA_STYLE_COLOUR('',#247);

#249=FILL_AREA_STYLE('',(#248));

#250=SURFACE_STYLE_FILL_AREA(#249);

#251=SURFACE_SIDE_STYLE('',(#250));

#252=SURFACE_STYLE_USAGE(.BOTH.,#251);

#253=PRESENTATION_STYLE_ASSIGNMENT((#252));

#254=OVER_RIDING_STYLED_ITEM('',(#253),#150,#233);

#276=DRAUGHTING_MODEL('#276',(#233,#241,#246,#254,#255,#263,#268,#273),#269

);

Figure 6 on the next page illustrates the entity structure to define an overriding surface color.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 12
 http://www.cax-if.org/

Figure 6: Representation of Overriding Surface Color

4.3.2 Overriding Edge Colors

For coloring of an edge, the color of the solid or surface is overridden. This happens by using

an instance of over_riding_styled_item.

Note that edge colors are applied by a curve_style rather than a surface_style. This

leads to a situation where the surface_style of the solid or surface containing the edge

could be overridden by a curve_style for the edge in question.

Only portions of shape redefined by over_riding_styled_item will be affected. Portions

not redefined by the overriding style shall be handled as already defined.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 13
 http://www.cax-if.org/

Figure 7: Representation of Overriding Edge Color

Part21 Example:

#87=EDGE_CURVE('',#28,#24,#66,.T.);

#242=DRAUGHTING_PRE_DEFINED_COLOUR('yellow');

#243=DRAUGHTING_PRE_DEFINED_CURVE_FONT('continuous');

#244=CURVE_STYLE('',#243,POSITIVE_LENGTH_MEASURE(1.0),#242);

#245=PRESENTATION_STYLE_ASSIGNMENT((#244));

#246=OVER_RIDING_STYLED_ITEM('',(#245),#87,#233);

#276=DRAUGHTING_MODEL('#276',(#233,#241,#246,#254,#255,#263,#268),#269);

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 14
 http://www.cax-if.org/

4.4 Point Style & Color

In several scenarios it is desired to present particular points in the model on the screen, e.g.
to illustrate weld spots or inspection points. A point by itself doesn’t have any geometric ex-
tent, but in CAD systems such points are typically presented using a pre-defined marker,
such as a cross or a circle. This marker can also have a color.

Figure 8 below illustrates the structure to define point style and color:

Figure 8: Definition of Point Style and Color

The representation_item in the lower left hand corner of Figure 8 is typically a

cartesian_point if a particular data point shall be presented. However, point style and

color can also be assigned to curves and surfaces, as explained by the following quote from

the definition of presentation_style_assignment in Part 46:

If a line is given a style which is a curve style, it shall appear. If a line is given both curve and
point style, but the curve and its related cartesian points shall appear.

The marker size is typically given as a positive_length_measure.

For the definition of the marker itself, the entity type pre_defined_point_marker_-

symbol shall be used (see Figure 8). It allows defining the following marker shapes by using

the corresponding string as value for the name attribute:

Marker Name value

* 'asterisk'

〇 'circle'

● 'dot'

+ 'plus'

⃞ 'square'

∆ 'triangle'

X 'x'

Table 3: Pre-defined Point Marker Symbols

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 15
 http://www.cax-if.org/

Part21 Example:

#44=CARTESIAN_POINT('Reference Point',(17.789,-11.092,26.287));

#322=PRE_DEFINED_MARKER('circle');

#323=DRAUGHTING_PRE_DEFINED_COLOUR('blue');

#324=POINT_STYLE(' ',#322,POSITIVE_LENGTH_MEASURE(2.),#323);

#325=PRESENTATION_STYLE_ASSIGNMENT((#324));

#326=STYLED_ITEM('',(#325),#44);

#327=DRAUGHTING_MODEL('#327',(#212,#243,#278,#326,#411 #504),#69);

4.5 Styling of Axis Placements

Depending on the use case, it is important to display coordinate systems defined in the mod-
el to the user, as they may carry process-relevant information such as tool targets etc. Other
coordinate systems may be less relevant and hence preferred to be hidden, in order to avoid
overloading the model display.

The STEP standard does not explicitly define specific styles for coordinate systems. Such a
style definition could be very simple (one color), or it could be very detailed (different colors
and curve styles for each axis, shape of the arrows, lengths of the axes etc.). This was dis-
cussed in BugZilla in #3526. It was agreed that the only meaningful style definition, if any, is
to define one color for the entire coordinate system.

The main requirement is to define whether a coordinate system, represented by an axis2_-

placement_3d, shall be displayed to the user or not. This is done by applying the conven-

tion given in section 4.1:

 If there is no styled_item referencing the axis2_placement_3d, it shall not be

displayed at all.

 If there is a styled_item (with a null_style) referencing the axis2_-

placement_3d, it shall be displayed to the user according to the target system’s de-

fault settings.

Figure 9: Displaying an Axis Placement

In order to support the requirement to define a single color for the entire placement, it was

agreed that no new entity type is needed. An instance of curve_style with only the

curve_colour defined, fulfills the requirement, as the intention of its use in this context can

be easily deduced.

Figure 10: Coloring an Axis Placement

5 Assembly Component Instance Styling
The scope is the assignment of new (overriding) styles to individual instances of an assembly
component, in order to emphasize certain parts in a given context. The style assigned is ei-
ther a new color or an “invisibility” tag, which will declare the respective component as hid-
den.

http://www.wikistep.org/bugzilla/show_bug.cgi?id=3526

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 16
 http://www.cax-if.org/

5.1 Linking the Style to the Component Instance

The main item of interest in the context of assembly component instance styling is the identi-
fication of the correct instance.

Note: Until version 1.2 of this document, this was done using NAUO and SHUO, i.e. on the
product assembly, to which then an empty representation was attached that served as an-
chor for the component instance style. In version 1.3 of this document, this has been re-
placed with a more elegant approach that works on the geometric assembly.

The core entity here is context_dependent_over_riding_styled_item (CDORSI),

which is contained in AP203e2, AP214e3, and AP242. It is a subtype of over_riding_-

styled_item as introduced in sections 4.3 and 4.3.2 above, and has an additional attribute

style_context, which is a list of, in this case, representation_relationships. This

list is filled top-down, and thus unambiguously identifies the instance of the component the
over-riding style shall be applied to. Figure 11 below gives an illustration based on the well-
known AS1 example:

Figure 11: Identification of the Instance to be styled

The CDORSI refers to three entities to assign the style in the intended context:

 item: the item to be styled, e.g. the shape_representation of the component.

 over_ridden_style: The original style that was assigned to the component itself.

Note that in the case of an assembly, this style may be assigned at a higher level in
the assembly structure, from where it by definition applies to all sub-assemblies and
components.

 style_context: the top-down list of representation_relationships that un-

ambiguously define the path from the root node to the target leaf node instance.

The diagram in Figure 12 below illustrates the implementation structure for the case where
one of the two Nuts of the Rod Assembly in AS1 shall be styled in a way different from the
default style. This way, all other instances of Nut will be displayed in the target system’s de-
fault color, while the specified instance will be shown in e.g. green.

T
o

p
 L

e
v
e

l
L

e
v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

T
o

p
 L

e
v
e

l
L

e
v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

AS1

L-Bracket-Assy

Nut-Bolt-Assy

Nut

RRWT

RRWT

Bolt

L-Bracket

RRWT

RRWT

Plate Rod Assembly

RRWT

RRWT

RRWT RRWT

RRWT

RRWT

RRWT

Rod

NAUORRWT

AS1

L-Bracket-Assy

Nut-Bolt-Assy

Nut

RRWT

RRWT

Bolt

L-Bracket

RRWT

RRWT

Plate Rod Assembly

RRWT

RRWT

RRWT RRWT

RRWT

RRWT

RRWT

Rod

NAUORRWT

CDORSIColor, Visibility

The CDORSI defines a top-

down list of representation_-

relationships to define the

context for the style

assignment.

CDORSIColor, Visibility

The CDORSI defines a top-

down list of representation_-

relationships to define the

context for the style

assignment.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 17
 http://www.cax-if.org/

Figure 12: Styling an instance of a component in an assembly

The capability to style certain instances of components in an assembly in a different way can

be extended even further by overriding the CDORSI itself with another instance CDORSI.

Building on the example given in Figure 12 above, it can now not only be defined that while
all instances of Nut are being displayed in the target system’s default style one particular
instance of Nut is shown in green; it can now be defined in addition that one face of that par-
ticular instance shall be red. This extension is illustrated in Figure 13 below:

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 18
 http://www.cax-if.org/

Figure 13: Styling a portion of an instance of a component in an assembly

5.2 Applicable Styles

The two styling characteristics described in this document that can be used to distinguish
one instance of a component from its other instances are color and visibility.

5.2.1 Color / Transparency

The assignment of a new (transparent) color happens in the same way already described in

sections 4.2.2 and 4.2.4 above. The CDORSI references in its set of styles an instance of

presentation_style_assignment, which defines the new color for the component in

the given context, see Figure 2 and Figure 4 respectively.

5.2.2 Invisibility

For invisibility, the definitions given in 4.2.5 apply here as well. In the context of assembly
instance styling, it can be used to hide a specific instance of a component. The structure for

this is again very simple: an instance of invisibility will be linked to the CDORSI.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 19
 http://www.cax-if.org/

6 Layers
A layer is a general structure for the collection of geometric and annotation elements.

6.1 Assigning Elements to a Layer

Layers shall not be nested, i.e.; a layer cannot be put on another layer.

Figure 14: Layer Representation

The presentation_layer_assignment entity collects all items that are on the same

layer in its assigned items attribute. These items are representation_items.

Part21 Example:

#225=PRESENTATION_LAYER_ASSIGNMENT('010','layer 010',(#206));

#206=SHELL_BASED_SURFACE_MODEL('#206',(#205));

Note that this ignores the informal proposition on layered_item provided in Part46. This

approach was chosen by the Implementor Forum in order to reduce exchange file size by

removing the need for layered_items to be styled_items, although a STEP file which

applies layers through styled_items is not deemed to be invalid.

6.2 Layer Naming Recommendations

As various CAD systems have different mechanisms for organizing layers and the elements
on them, the following recommendations are given to ensure interoperability

Pre-processor Recommendations:

 Create only one instance of presentation_layer_assignment per layer, and not

for each individual element assigned to the layer.

 Do not use empty layer names. Some systems ignore layers with empty names on
import.

 Use unique names for layers if the elements are expected to behave differently, e.g.
regarding their visibility.

Post-processor Recommendations:

 If multiple layers with identical names are encountered on import, they shall be
merged into a single layer in the target system.

6.3 Layer Styling

In addition, a whole layer can be set to invisible, using an instance of invisibility refer-

encing the presentation_layer_assignment.

Note that even though all unstyled items are considered to be invisible, in the case of intend-
ed invisibility the invisible objects shall be declared explicitly as invisible. This may happen
directly for each object or indirectly via declaring the layer containing the objects as invisible.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 20
 http://www.cax-if.org/

7 Groups
A group is an organizational structure that allows the grouping of specific elements in the
model together. Relationships can be defined between groups to create a group hierarchy.

7.1 Assigning Elements to a Group

Figure 15: Group Assignment Representation

(*) Note: Even though applied_group_assignment is contained in both AP203e2 and

AP214, the select types for group_item (AP214) and groupable_item (AP203e2) are

different. AP203e2 allows more entity types to be grouped together. In AP214, a where rule

further limits the groupable items to geometric_representation_items and

shape_aspects.

As long as no further business requirements are known, the items in a group shall be limited
to the AP214 definition.

7.2 Defining Group Relationships

Groups may be used to define other groups, and thus to create a group hierarchy.

Figure 16: Group Relationship Representation

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 21
 http://www.cax-if.org/

8 CATIA Geometric Sets
Geometric Sets are a model structuring mechanism that is specific to Dassault Systèmes’
CATIA V5 and 3DEXPERIENCE CAD systems. It subdivides all constituent elements of a model
into sets, such that each model element belongs to exactly one Geometric Set. The sets can
be nested, i.e. a Geometric Set may contain another Geometric Set.

In the example below, the Geometric Set “GS1” contains “Point.1” and anther Geometric Set,
“GS.2”. This then contains “Point.2”.

Figure 17: Geometric Set Example

While other CAD systems may have their own structuring mechanisms, none of them are
similar or mappable to the Geometric Sets.

However by design, the Geometric Sets can carry process-relevant information that needs to
be preserved for roundtrip scenarios (e.g., CATIA – STEP – CATIA), e.g. for long-term ar-
chiving of digital design data. Hence, the requirement to preserve them in STEP. Though the
Geometric Sets can be understood as a grouping mechanism, it was agreed not to use the
Group functionality in STEP as described in section 7 above, in order to avoid ambiguity with
the actual grouping mechanism that CATIA provides as well.

The following structure is recommended:

 Each Geometric Set will be represented as a shape_aspect with:

o shape_aspect.name carrying the name of the Geometric Set, e.g. “GS1”.

o shape_aspect.description carrying the magic string “CATIA Geometric

Set”.

 The hierarchical structure will be represented using instances of shape_aspect_-

relationship with:

o The relating attribute pointing to the parent set (“GS1” in the example

above)

o The related attribute pointing to the child set (“GS2” in the example above)

o The description attribute carrying the magic string “CATIA Geometric Set”.

Any target system other than CATIA V5 or 3DEXPERIENCE shall ignore any shape_aspects

and shape_aspect_relationships with their description set to “CATIA Geometric Set”.

CAx-IF testing determined Geometric Sets defined this way do not cause unwanted side-
effects in other CAD systems.

CAx-IF Recommended Practices
Model Styling and Organization
Version 1.5, August 15, 2016

© CAx Implementor Forum http://www.cax-if.de/ 22
 http://www.cax-if.org/

Annex A Part 21 File Examples
STEP files relating to the capabilities described in this document are available in the public
STEP File Library on the CAx-IF homepage; see either

 http://www.cax-if.de/library/ or

 http://www.cax-if.org/library/

The files are typically based on AP203 Edition 2, AP214 Edition3, or AP242, and will have
been checked for syntax and compliance with the Recommended Practices.

Annex B Availability of implementation schemas

B.1 AP214

The AP214 schemas support the implementation of the capabilities as described. The sche-
mas can be retrieved from:

 IS Version (2001) – http://www.cax-if.de/documents/ap214_is_schema.zip

 3rd Edition (2010) – http://www.cax-if.de/documents/AP214E3_2010.zip

B.2 AP203 2nd Edition

The long form EXPRESS schema for the second edition of AP203 (2011) can be retrieved
from:

 http://www.cax-if.de/documents/part403ts_wg3n2635mim_lf.exp

Note that the first edition of AP203 is no longer supported in the Recommended Practices.

B.3 AP242

The long form EXPRESS schema for the first edition of AP242 can be retrieved from:

 http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip

http://www.cax-if.de/library/
http://www.cax-if.org/library/
http://www.cax-if.de/documents/ap214_is_schema.zip
http://www.cax-if.de/documents/AP214E3_2010.zip
http://www.cax-if.de/documents/part403ts_wg3n2635mim_lf.exp
http://www.cax-if.de/documents/ap242_is_mim_lf_v1.36.zip

